TY - JOUR
T1 - Nonlinear optics with near-infrared excitation enable real-time quantitative diagnosis of human cervical cancers
AU - Matsui, Takahiro
AU - Tamoto, Ryo
AU - Iwasa, Akio
AU - Mimura, Masafumi
AU - Taniguchi, Seiji
AU - Hasegawa, Tetsuo
AU - Sudo, Takao
AU - Mizuno, Hiroki
AU - Kikuta, Junichi
AU - Onoyama, Ichiro
AU - Okugawa, Kaoru
AU - Shiomi, Mayu
AU - Matsuzaki, Shinya
AU - Morii, Eiichi
AU - Kimura, Tadashi
AU - Kato, Kiyoko
AU - Kiyota, Yasujiro
AU - Ishii, Masaru
N1 - Publisher Copyright:
© 2020 American Association for Cancer Research.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Histopathologic analysis through biopsy has been one of the most useful methods for the assessment of malignant neoplasms. However, some aspects of the analysis such as invasiveness, evaluation range, and turnaround time from biopsy to report could be improved. Here, we report a novel method for visualizing human cervical tissue three-dimensionally, without biopsy, fixation, or staining, and with sufficient quality for histologic diagnosis. Near-infrared excitation and nonlinear optics were employed to visualize unstained human epithelial tissues of the cervix uteri by constructing images with third-harmonic generation (THG) and second-harmonic generation (SHG). THG images enabled evaluation of nuclear morphology in a quantitative manner with six parameters after image analysis using deep learning. It was also possible to quantitatively assess intraepithelial fibrotic changes based on SHG images and another deep learning analysis. Using each analytical procedure alone, normal and cancerous tissue were classified quantitatively with an AUC ≥0.92. Moreover, a combinatory analysis of THG and SHG images with a machine learning algorithm allowed accurate classification of three-dimensional image files of normal tissue, intraepithelial neoplasia, and invasive carcinoma with a weighted kappa coefficient of 0.86. Our method enables real-time noninvasive diagnosis of cervical lesions, thus constituting a potential tool to dramatically change early detection.
AB - Histopathologic analysis through biopsy has been one of the most useful methods for the assessment of malignant neoplasms. However, some aspects of the analysis such as invasiveness, evaluation range, and turnaround time from biopsy to report could be improved. Here, we report a novel method for visualizing human cervical tissue three-dimensionally, without biopsy, fixation, or staining, and with sufficient quality for histologic diagnosis. Near-infrared excitation and nonlinear optics were employed to visualize unstained human epithelial tissues of the cervix uteri by constructing images with third-harmonic generation (THG) and second-harmonic generation (SHG). THG images enabled evaluation of nuclear morphology in a quantitative manner with six parameters after image analysis using deep learning. It was also possible to quantitatively assess intraepithelial fibrotic changes based on SHG images and another deep learning analysis. Using each analytical procedure alone, normal and cancerous tissue were classified quantitatively with an AUC ≥0.92. Moreover, a combinatory analysis of THG and SHG images with a machine learning algorithm allowed accurate classification of three-dimensional image files of normal tissue, intraepithelial neoplasia, and invasive carcinoma with a weighted kappa coefficient of 0.86. Our method enables real-time noninvasive diagnosis of cervical lesions, thus constituting a potential tool to dramatically change early detection.
UR - http://www.scopus.com/inward/record.url?scp=85100353393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100353393&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-20-0348
DO - 10.1158/0008-5472.CAN-20-0348
M3 - Article
C2 - 32718995
AN - SCOPUS:85100353393
SN - 0008-5472
VL - 80
SP - 3745
EP - 3754
JO - Cancer Research
JF - Cancer Research
IS - 17
ER -