TY - JOUR
T1 - Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset
AU - Hirao, Kenzo
AU - Eto, Kei
AU - Nakahata, Yoshihisa
AU - Ishibashi, Hitoshi
AU - Nagai, Taku
AU - Nabekura, Junichi
N1 - Publisher Copyright:
© 2015 the American Physiological Society.
PY - 2015/9/22
Y1 - 2015/9/22
N2 - Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.
AB - Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.
UR - http://www.scopus.com/inward/record.url?scp=84942279659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942279659&partnerID=8YFLogxK
U2 - 10.1152/jn.00813.2014
DO - 10.1152/jn.00813.2014
M3 - Article
C2 - 26203112
AN - SCOPUS:84942279659
SN - 0022-3077
VL - 114
SP - 1974
EP - 1986
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 3
ER -