Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase

Toshifumi Fukuda, Kazutoshi Kiuchi, Masahide Takahashi

Research output: Contribution to journalArticlepeer-review

101 Citations (Scopus)

Abstract

Rac activation in neuronal cells plays an important role in lamellipodia formation that is a critical event for neuritogenesis. It is well known that the Rac activity is regulated via activation of phosphatidylinositol 3-kinase (PI3K) by a variety of receptor tyrosine kinases. Here we show that increased serine phosphorylation on RET receptor tyrosine kinase following cAMP elevation promotes lamellipodia formation of neuronal cells induced by glial cell line-derived neurotrophic factor (GDNF). We identified serine 696 in RET as a putative phosphorylation site by protein kinase A and found that mutation of this serine almost completely inhibited lamellipodia formation by GDNF without affecting activation of the PI3K/AKT signaling pathway. Mutation of tyrosine 1062 in RET, whose phosphorylation is crucial for activation of PI3K, also inhibited lamellipodia formation by GDNF. Inhibition of lamellipodia formation by mutation of either serine 696 or tyrosine 1062 was associated with decrease of the Rac1-guanine nucleotide exchange factor (GEF) activity, suggesting that this activity is regulated by two different signaling pathways via serine 696 and tyrosine 1062 in RET. Moreover, in the presence of serine 696 mutation, lamellipodia formation was rescued by replacing tyrosine 687 with phenylalanine. These findings propose a novel mechanism that receptor tyrosine kinase modulates actin dynamics in neuronal cells via its cAMP-dependent phosphorylation.

Original languageEnglish
Pages (from-to)19114-19121
Number of pages8
JournalJournal of Biological Chemistry
Volume277
Issue number21
DOIs
Publication statusPublished - 24-05-2002
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase'. Together they form a unique fingerprint.

Cite this