TY - JOUR
T1 - Objective characterization of hip pain levels during walking by combining quantitative electroencephalography with machine learning
AU - Kimura, Atsushi
AU - Mitsukura, Yasue
AU - Oya, Akihito
AU - Matsumoto, Morio
AU - Nakamura, Masaya
AU - Kanaji, Arihiko
AU - Miyamoto, Takeshi
N1 - Funding Information:
T. Miyamoto was supported by a grant-in-aid for Scientific Research in Japan and a grant from the Japan Agency for Medical Research and Development. Y. Sato and K. Sato were supported by a grant-in-aid for Scientific Research in Japan.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Pain is an undesirable sensory experience that can induce depression and limit individuals’ activities of daily living, in turn negatively impacting the labor force. Affected people frequently feel pain during activity; however, pain is subjective and difficult to judge objectively, particularly during activity. Here, we developed a system to objectively judge pain levels in walking subjects by recording their quantitative electroencephalography (qEEG) and analyzing data by machine learning. To do so, we enrolled 23 patients who had undergone total hip replacement for pain, and recorded their qEEG during a five-minute walk via a wearable device with a single electrode placed over the Fp1 region, based on the 10–20 Electrode Placement System, before and three months after surgery. We also assessed subject hip pain using a numerical rating scale. Brain wave amplitude differed significantly among subjects with different levels of hip pain at frequencies ranging from 1 to 35 Hz. qEEG data were also analyzed by a support vector machine using the Radial Basis Functional Kernel, a function used in machine learning. That approach showed that an individual’s hip pain during walking can be recognized and subdivided into pain quartiles with 79.6% recognition Accuracy. Overall, we have devised an objective and non-invasive tool to monitor an individual’s pain during walking.
AB - Pain is an undesirable sensory experience that can induce depression and limit individuals’ activities of daily living, in turn negatively impacting the labor force. Affected people frequently feel pain during activity; however, pain is subjective and difficult to judge objectively, particularly during activity. Here, we developed a system to objectively judge pain levels in walking subjects by recording their quantitative electroencephalography (qEEG) and analyzing data by machine learning. To do so, we enrolled 23 patients who had undergone total hip replacement for pain, and recorded their qEEG during a five-minute walk via a wearable device with a single electrode placed over the Fp1 region, based on the 10–20 Electrode Placement System, before and three months after surgery. We also assessed subject hip pain using a numerical rating scale. Brain wave amplitude differed significantly among subjects with different levels of hip pain at frequencies ranging from 1 to 35 Hz. qEEG data were also analyzed by a support vector machine using the Radial Basis Functional Kernel, a function used in machine learning. That approach showed that an individual’s hip pain during walking can be recognized and subdivided into pain quartiles with 79.6% recognition Accuracy. Overall, we have devised an objective and non-invasive tool to monitor an individual’s pain during walking.
UR - http://www.scopus.com/inward/record.url?scp=85100459278&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100459278&partnerID=8YFLogxK
U2 - 10.1038/s41598-021-82696-1
DO - 10.1038/s41598-021-82696-1
M3 - Article
C2 - 33542388
AN - SCOPUS:85100459278
SN - 2045-2322
VL - 11
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 3192
ER -