On-ground calibration of the Hitomi Hard X-ray Telescopes

Hideyuki Mori, Takuya Miyazawa, Hisamitsu Awaki, Hironori Matsumoto, Yasunori Babazaki, Ayako Bandai, Tadatsugu Demoto, Akihiro Furuzawa, Yoshito Haba, Takayuki Hayashi, Ryo Iizuka, Kazunori Ishibashi, Manabu Ishida, Naoki Ishida, Masayuki Itoh, Toshihiro Iwase, Hiroyoshi Kato, Hiroaki Kobayashi, Tatsuro Kosaka, Hideyo KuniedaShou Kurashima, Daichi Kurihara, Yuuji Kuroda, Yoshitomo Maeda, Yoshifumi Meshino, Ikuyuki Mitsuishi, Yuusuke Miyata, Housei Nagano, Yoshiharu Namba, Yasushi Ogasaka, Keiji Ogi, Takashi Okajima, Shigetaka Saji, Fumiya Shimasaki, Takuro Sato, Toshiki Sato, Naotsugu Shima, Satoshi Sugita, Yoshio Suzuki, Kenji Tachibana, Sasagu Tachibana, Shun'Ya Takizawa, Keisuke Tamura, Yuzuru Tawara, Kazuki Tomikawa, Tatsuharu Torii, Kentaro Uesugi, Koujun Yamashita, Shigeo Yamauchi

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

We present x-ray characteristics of the Hard X-ray Telescopes (HXTs) on board the Hitomi (ASTRO-H) satellite. Measurements were conducted at the SPring-8 BL20B2 beamline and the ISAS/JAXA 27-m beamline. The angular resolution defined by a half-power diameter was 1.9′ (HXT-1) and 2.1′ (HXT-2) at 8 keV, 1.9′ at 30 keV, and 1.8′ at 50 keV. The effective area was found to be 620cm2 at 8 keV, 178cm2 at 30 keV, and 82cm2 at 50 keV per mirror module. Although the angular resolutions were slightly worse than the requirement (1.7′), the effective areas sufficiently exceeded the requirements of 150cm2 at 30 keV and 55cm2 at 50 keV. The off-axis measurements of the effective areas resulted in the field of view being 6.1′ at 50 keV, 7.7′ at 30 keV, and 9.7′ at 8 keV in diameter. We confirmed that the main component of the stray x-ray light was significantly reduced by mounting the precollimator as designed. Detailed analysis of the data revealed that the angular resolution was degraded mainly by figure errors of mirror foils, and the angular resolution is completely explained by the figure errors, positioning errors of the foils, and conical approximation of the foil shape. We found that the effective areas were ∼80% of the designed values below 40 keV, whereas they steeply decline above 40 keV and become only ∼50%. We investigated this abrupt decline and found that neither the error of the multilayer design nor the errors of the incident angles induced by the positioning errors of the foils can be the cause. The reflection profile of each foil pair from the defocused image strongly suggests that the figure errors of the foils probably bring about the reduction in the effective areas at higher energies.

Original languageEnglish
Article number044001
JournalJournal of Astronomical Telescopes, Instruments, and Systems
Volume4
Issue number1
DOIs
Publication statusPublished - 01-01-2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Control and Systems Engineering
  • Instrumentation
  • Astronomy and Astrophysics
  • Mechanical Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'On-ground calibration of the Hitomi Hard X-ray Telescopes'. Together they form a unique fingerprint.

Cite this