OXA-23 and OXA-40 producing carbapenem-resistant Acinetobacter baumannii in Central Illinois

Janak Koirala, Isha Tyagi, Lohitha Guntupalli, Sameena Koirala, Udita Chapagain, Christopher Quarshie, Sami Akram, Vidya Sundareshan, Sajan Koirala, Jerry Lawhorn, Yohei Doi, Michael Olson

Research output: Contribution to journalArticle

Abstract

We reviewed susceptibility of 840 A. baumannii complex isolates at two academic medical centers and explored their mechanism of carbapenem resistance. Carbapenem resistance rates among A. baumannii increased from <5% before 2005 to 55% in 2011 and declined thereafter. We subjected 86 isolates for further antibiotic susceptibility testing using E-test, screened for MBL and carbapenemase production, and performed PCR for blaOXA genes. Statistical analyses included correlation of resistance genes with susceptibility. Sixty-one isolates were non-susceptible to carbapenems (MIC >2 μg/mL). Phenotypic screening showed carbapenemase production in 50 isolates, but none was positive for MBL. Among carbapenem non-susceptible isolates, the CHDL (group D carbapenemase) encoding genes blaOXA-23 (52%) and blaOXA-40 (28%) were the most frequent genes. In conclusion, carbapenem resistance rates in A. baumannii peaked in 2011 and have since declined in our region. Carbapenem resistance among A. baumannii was primarily associated with production of acquired CHDLs including OXA-23 and OXA-40.

Original languageEnglish
Article number114999
JournalDiagnostic Microbiology and Infectious Disease
Volume97
Issue number1
DOIs
Publication statusPublished - 05-2020

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Microbiology (medical)
  • Infectious Diseases

Cite this

Koirala, J., Tyagi, I., Guntupalli, L., Koirala, S., Chapagain, U., Quarshie, C., Akram, S., Sundareshan, V., Koirala, S., Lawhorn, J., Doi, Y., & Olson, M. (2020). OXA-23 and OXA-40 producing carbapenem-resistant Acinetobacter baumannii in Central Illinois. Diagnostic Microbiology and Infectious Disease, 97(1), [114999]. https://doi.org/10.1016/j.diagmicrobio.2020.114999