TY - JOUR
T1 - Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors
AU - Hikida, Takatoshi
AU - Yawata, Satoshi
AU - Yamaguchi, Takashi
AU - Danjo, Teruko
AU - Sasaoka, Toshikuni
AU - Wang, Yanyan
AU - Nakanishi, Shigetada
PY - 2013/1/2
Y1 - 2013/1/2
N2 - The basal ganglia-thalamocortical circuitry plays a central role in selecting actions that achieve reward-seeking outcomes and avoid aversive ones. Inputs of the nucleus accumbens (NAc) in this circuitry are transmitted through two parallel pathways: the striatonigral direct pathway and the striatopallidal indirect pathway. In the NAc, dopaminergic (DA) modulation of the direct and the indirect pathways is critical in reward-based and aversive learning and cocaine addiction. To explore how DA modulation regulates the associative learning behavior, we developed an asymmetric reversible neurotransmission-blocking technique in which transmission of each pathway was unilaterally blocked by transmission-blocking tetanus toxin and the transmission on the intact side was pharmacologically manipulated by local infusion of a receptor-specific agonist or antagonist. This approach revealed that the activation of D1 receptors and the inactivation of D2 receptors postsynaptically control reward learning/cocaine addiction and aversive learning in a direct pathway-specific and indirect pathway-specific manner, respectively. Furthermore, this study demonstrated that aversive learning is elicited by elaborate actions of NMDA receptors, adenosine A2a receptors, and endocannabinoid CB1 receptors, which serve as key neurotransmitter receptors in inducing long-term potentiation in the indirect pathway. Thus, reward and aversive learning is regulated by pathway-specific neural plasticity via selective transmitter receptors in the NAc circuit.
AB - The basal ganglia-thalamocortical circuitry plays a central role in selecting actions that achieve reward-seeking outcomes and avoid aversive ones. Inputs of the nucleus accumbens (NAc) in this circuitry are transmitted through two parallel pathways: the striatonigral direct pathway and the striatopallidal indirect pathway. In the NAc, dopaminergic (DA) modulation of the direct and the indirect pathways is critical in reward-based and aversive learning and cocaine addiction. To explore how DA modulation regulates the associative learning behavior, we developed an asymmetric reversible neurotransmission-blocking technique in which transmission of each pathway was unilaterally blocked by transmission-blocking tetanus toxin and the transmission on the intact side was pharmacologically manipulated by local infusion of a receptor-specific agonist or antagonist. This approach revealed that the activation of D1 receptors and the inactivation of D2 receptors postsynaptically control reward learning/cocaine addiction and aversive learning in a direct pathway-specific and indirect pathway-specific manner, respectively. Furthermore, this study demonstrated that aversive learning is elicited by elaborate actions of NMDA receptors, adenosine A2a receptors, and endocannabinoid CB1 receptors, which serve as key neurotransmitter receptors in inducing long-term potentiation in the indirect pathway. Thus, reward and aversive learning is regulated by pathway-specific neural plasticity via selective transmitter receptors in the NAc circuit.
UR - http://www.scopus.com/inward/record.url?scp=84871944210&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871944210&partnerID=8YFLogxK
U2 - 10.1073/pnas.1220358110
DO - 10.1073/pnas.1220358110
M3 - Article
C2 - 23248274
AN - SCOPUS:84871944210
SN - 0027-8424
VL - 110
SP - 342
EP - 347
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 1
ER -