Periostin antisense oligonucleotide suppresses bleomycin-induced formation of a lung premetastatic niche for melanoma

Takashi Semba, Eiji Sugihara, Nagisa Kamoshita, Sayaka Ueno, Keitaro Fukuda, Masafumi Yoshino, Kazumasa Takao, Kazunori Yoshikawa, Kenji Izuhara, Yoshimi Arima, Makoto Suzuki, Hideyuki Saya

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Metastasis is the leading cause of cancer death. A tumor-supportive microenvironment, or premetastatic niche, at potential secondary tumor sites plays an important role in metastasis, especially in tumor cell colonization. Although a fibrotic milieu is known to promote tumorigenesis and metastasis, the underlying molecular contributors to this effect have remained unclear. Here we show that periostin, a component of the extracellular matrix that functions in tissue remodeling, has a key role in formation of a fibrotic environment that promotes tumor metastatic colonization. We found that periostin was widely expressed in fibrotic lesions of mice with bleomycin-induced lung fibrosis, and that up-regulation of periostin expression coincided with activation of myofibroblasts positive for α-smooth muscle actin. We established a lung metastasis model for B16 murine melanoma cells and showed that metastatic colonization of the lung by these cells was markedly promoted by bleomycin-induced lung fibrosis. Inhibition of periostin expression by giving an intratracheal antisense oligonucleotide targeting periostin mRNA was found to suppress bleomycin-induced lung fibrosis and thereby to attenuate metastatic colonization of the lung by melanoma cells. Our results indicate that periostin is a key player in the development of bleomycin-induced fibrosis and consequent enhancement of tumor cell colonization in the lung. Our results therefore implicate periostin as a potential target for prevention or treatment of lung metastasis.

Original languageEnglish
Pages (from-to)1447-1454
Number of pages8
JournalCancer science
Issue number5
Publication statusPublished - 05-2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research


Dive into the research topics of 'Periostin antisense oligonucleotide suppresses bleomycin-induced formation of a lung premetastatic niche for melanoma'. Together they form a unique fingerprint.

Cite this