TY - JOUR
T1 - Physical and functional association of glucuronyltransferases and sulfotransferase involved in HNK-1 biosynthesis
AU - Kizuka, Yasuhiko
AU - Matsui, Takahiro
AU - Takematsu, Hiromu
AU - Kozutsumi, Yasunori
AU - Kawasaki, Toshisuke
AU - Oka, Shogo
PY - 2006/5/12
Y1 - 2006/5/12
N2 - HNK-1 carbohydrate expressed predominantly in the nervous system is considered to be involved in cell migration, recognition, adhesion, and synaptic plasticity. Human natural killer-1 (HNK-1) carbohydrate has a unique structure consisting of a sulfated trisaccharide (HSO3-3GlcAβ1- 3Galβ1-4GlcNAc-) and is sequentially biosynthesized by one of two glucuronyltransferases (GlcAT-P or GlcAT-S) and a sulfotransferase (HNK-1ST). Considering that almost all the HNK-1 carbohydrate structures so far determined in the nervous system are sulfated, we hypothesized that GlcAT-P or GlcAT-S functionally associates with HNK-1ST, which results in efficient sequential biosynthesis of HNK-1 carbohydrate. In this study, we demonstrated that both GlcAT-P and GlcAT-S were co-immunoprecipitated with HNK-1ST with a transient expression system in Chinese hamster ovary cells. Immunofluorescence staining revealed that these enzymes are mainly co-localized in the Golgi apparatus. To determine which domain is involved in this interaction, we prepared the C-terminal catalytic domains of GlcAT-P, GlcAT-S, and HNK-1ST, and we then performed pulldown assays with the purified enzymes. As a result, we obtained evidence that mutual catalytic domains of GlcAT-P or GlcAT-S and HNK-1ST are important and sufficient for formation of an enzyme complex. With an in vitro assay system, the activity of HNK-1ST increased about 2-fold in the presence of GlcAT-P or GlcAT-S compared with that in its absence. These results suggest that the function of this enzyme complex is relevant to the efficient sequential biosynthesis of the HNK-1 carbohydrate.
AB - HNK-1 carbohydrate expressed predominantly in the nervous system is considered to be involved in cell migration, recognition, adhesion, and synaptic plasticity. Human natural killer-1 (HNK-1) carbohydrate has a unique structure consisting of a sulfated trisaccharide (HSO3-3GlcAβ1- 3Galβ1-4GlcNAc-) and is sequentially biosynthesized by one of two glucuronyltransferases (GlcAT-P or GlcAT-S) and a sulfotransferase (HNK-1ST). Considering that almost all the HNK-1 carbohydrate structures so far determined in the nervous system are sulfated, we hypothesized that GlcAT-P or GlcAT-S functionally associates with HNK-1ST, which results in efficient sequential biosynthesis of HNK-1 carbohydrate. In this study, we demonstrated that both GlcAT-P and GlcAT-S were co-immunoprecipitated with HNK-1ST with a transient expression system in Chinese hamster ovary cells. Immunofluorescence staining revealed that these enzymes are mainly co-localized in the Golgi apparatus. To determine which domain is involved in this interaction, we prepared the C-terminal catalytic domains of GlcAT-P, GlcAT-S, and HNK-1ST, and we then performed pulldown assays with the purified enzymes. As a result, we obtained evidence that mutual catalytic domains of GlcAT-P or GlcAT-S and HNK-1ST are important and sufficient for formation of an enzyme complex. With an in vitro assay system, the activity of HNK-1ST increased about 2-fold in the presence of GlcAT-P or GlcAT-S compared with that in its absence. These results suggest that the function of this enzyme complex is relevant to the efficient sequential biosynthesis of the HNK-1 carbohydrate.
UR - http://www.scopus.com/inward/record.url?scp=33744952647&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33744952647&partnerID=8YFLogxK
U2 - 10.1074/jbc.M601453200
DO - 10.1074/jbc.M601453200
M3 - Article
C2 - 16543228
AN - SCOPUS:33744952647
SN - 0021-9258
VL - 281
SP - 13644
EP - 13651
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 19
ER -