TY - JOUR
T1 - PKCδ Knockout Mice Are Protected from Dextromethorphan-Induced Serotonergic Behaviors in Mice
T2 - Involvements of Downregulation of 5-HT1A Receptor and Upregulation of Nrf2-Dependent GSH Synthesis
AU - Tran, Hai Quyen
AU - Lee, Youngho
AU - Shin, Eun Joo
AU - Jang, Choon Gon
AU - Jeong, Ji Hoon
AU - Mouri, Akihiro
AU - Saito, Kuniaki
AU - Nabeshima, Toshitaka
AU - Kim, Hyoung Chun
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - We investigated whether a specific serotonin (5-HT) receptor-mediated mechanism was involved in dextromethorphan (DM)-induced serotonergic behaviors. We firstly observed that the activation of 5-HT1A receptor, but not 5-HT2A receptor, contributed to DM-induced serotonergic behaviors in mice. We aimed to determine whether the upregulation of 5-HT1A receptor induced by DM facilitates the specific induction of certain PKC isoform, because previous reports suggested that 5-HT1A receptor activates protein kinase C (PKC). A high dose of DM (80 mg/kg, i.p.) induced a selective induction of PKCδ out of PKCα, PKCβI, PKCβII, PKCξ, and PKCδ in the hypothalamus of wild-type (WT) mice. More importantly, 5-HT1A receptor co-immunoprecipitated PKCδ in the presence of DM. Consistently, rottlerin, a pharmacological inhibitor of PKCδ, or PKCδ knockout significantly protected against increases in 5-HT1A receptor gene expression, 5-HT turnover rate, and serotonergic behaviors induced by DM. Treatment with DM resulted in an initial increase in nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation and DNA-binding activity, γ-glutamylcysteine (GCL) mRNA expression, and glutathione (GSH) level. This compensative induction was further potentiated by rottlerin or PKCδ knockout. However, GCL mRNA and GSH/GSSG levels were decreased 6 and 12 h post-DM. These decreases were attenuated by PKCδ inhibition. Our results suggest that interaction between 5-HT1A receptor and PKCδ is critical for inducing DM-induced serotonergic behaviors and that inhibition of PKCδ attenuates the serotonergic behaviors via downregulation of 5-HT1A receptor and upregulation of Nrf2-dependent GSH synthesis.
AB - We investigated whether a specific serotonin (5-HT) receptor-mediated mechanism was involved in dextromethorphan (DM)-induced serotonergic behaviors. We firstly observed that the activation of 5-HT1A receptor, but not 5-HT2A receptor, contributed to DM-induced serotonergic behaviors in mice. We aimed to determine whether the upregulation of 5-HT1A receptor induced by DM facilitates the specific induction of certain PKC isoform, because previous reports suggested that 5-HT1A receptor activates protein kinase C (PKC). A high dose of DM (80 mg/kg, i.p.) induced a selective induction of PKCδ out of PKCα, PKCβI, PKCβII, PKCξ, and PKCδ in the hypothalamus of wild-type (WT) mice. More importantly, 5-HT1A receptor co-immunoprecipitated PKCδ in the presence of DM. Consistently, rottlerin, a pharmacological inhibitor of PKCδ, or PKCδ knockout significantly protected against increases in 5-HT1A receptor gene expression, 5-HT turnover rate, and serotonergic behaviors induced by DM. Treatment with DM resulted in an initial increase in nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation and DNA-binding activity, γ-glutamylcysteine (GCL) mRNA expression, and glutathione (GSH) level. This compensative induction was further potentiated by rottlerin or PKCδ knockout. However, GCL mRNA and GSH/GSSG levels were decreased 6 and 12 h post-DM. These decreases were attenuated by PKCδ inhibition. Our results suggest that interaction between 5-HT1A receptor and PKCδ is critical for inducing DM-induced serotonergic behaviors and that inhibition of PKCδ attenuates the serotonergic behaviors via downregulation of 5-HT1A receptor and upregulation of Nrf2-dependent GSH synthesis.
UR - http://www.scopus.com/inward/record.url?scp=85042209025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042209025&partnerID=8YFLogxK
U2 - 10.1007/s12035-018-0938-7
DO - 10.1007/s12035-018-0938-7
M3 - Article
C2 - 29468562
AN - SCOPUS:85042209025
SN - 0893-7648
VL - 55
SP - 7802
EP - 7821
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 10
ER -