Prediction model of acute kidney injury induced by cisplatin in older adults using a machine learning algorithm

Takaya Okawa, Tomohiro Mizuno, Shogo Hanabusa, Takeshi Ikeda, Fumihiro Mizokami, Takenao Koseki, Kazuo Takahashi, Yukio Yuzawa, Naotake Tsuboi, Shigeki Yamada, Yoshitaka Kameya

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Background Early detection and prediction of cisplatin-induced acute kidney injury (Cis-AKI) are essential for the management of patients on chemotherapy with cisplatin. This study aimed to evaluate the performance of a prediction model for Cis-AKI. Methods Japanese patients, who received cisplatin as the first-line chemotherapy at Fujita Health University Hospital, were enrolled in the study. The main metrics for evaluating the machine learning model were the area under the curve (AUC), accuracy, precision, recall, and F-measure. In addition, the rank of contribution as a predictive factor of Cis-AKI was determined by machine learning. Results A total of 1,014 and 226 patients were assigned to the development and validation data groups, respectively. The current prediction model showed the highest performance in patients 65 years old and above (AUC: 0.78, accuracy: 0.77, precision: 0.38, recall: 0.70, F-measure: 0.49). The maximum daily cisplatin dose and serum albumin levels contributed the most to the prediction of Cis-AKI. Conclusion Our prediction model for Cis-AKI performed effectively in older patients.

Original languageEnglish
Article numbere0262021
JournalPloS one
Volume17
Issue number1 January
DOIs
Publication statusPublished - 01-2022

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Prediction model of acute kidney injury induced by cisplatin in older adults using a machine learning algorithm'. Together they form a unique fingerprint.

Cite this