TY - GEN
T1 - Preliminary study on the automated skull fracture detection in CT images using black-hat transform
AU - Yamada, Ayumi
AU - Teramoto, Atsushi
AU - Otsuka, Tomoko
AU - Kudo, Kohei
AU - Anno, Hirofumi
AU - Fujita, Hiroshi
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/10/13
Y1 - 2016/10/13
N2 - Linear skull fracture, following head trauma, may reach major blood vessels, such as the middle meningeal artery or sinus venosus, and may cause epidural hematoma. However, hematoma is likely to be missed in the initial interpretation because it spreads only gradually. In addition, the fracture lines that run along the scan slice plane are often missed during initial interpretation. In this study, we develop a novel method for automated detection of the linear skull fracture using head computed tomography (CT) images and conduct a basic evaluation using digital phantom and head phantom that enclose genuine human bones. In the proposed method, the bone region is first extracted using morphological processing of the head CT images. Then, the cranial vault is determined from the CT scout view image. The skull has low-density cancellous bone between the hard two-layer high-density compact bones. Because the fracture lines of compact bones are more clearly recognized as compared to cancellous bones, the bone surface is then extracted by performing three-dimensional (3D) Laplacian filtering. Finally, linear structures are extracted by applying the black-hat transform to the bone surface image. In the experiments, we evaluated the proposed method using digital phantom and CT images of the head phantom. From the experiments using digital phantom, we were able to detect a crack line with a width of 0.35 mm. In the experiments using head phantom, we were able to clearly detect the crack lines in the phantom. These results indicate that our proposed method will be useful for the automated detection of skull fracture in CT images.
AB - Linear skull fracture, following head trauma, may reach major blood vessels, such as the middle meningeal artery or sinus venosus, and may cause epidural hematoma. However, hematoma is likely to be missed in the initial interpretation because it spreads only gradually. In addition, the fracture lines that run along the scan slice plane are often missed during initial interpretation. In this study, we develop a novel method for automated detection of the linear skull fracture using head computed tomography (CT) images and conduct a basic evaluation using digital phantom and head phantom that enclose genuine human bones. In the proposed method, the bone region is first extracted using morphological processing of the head CT images. Then, the cranial vault is determined from the CT scout view image. The skull has low-density cancellous bone between the hard two-layer high-density compact bones. Because the fracture lines of compact bones are more clearly recognized as compared to cancellous bones, the bone surface is then extracted by performing three-dimensional (3D) Laplacian filtering. Finally, linear structures are extracted by applying the black-hat transform to the bone surface image. In the experiments, we evaluated the proposed method using digital phantom and CT images of the head phantom. From the experiments using digital phantom, we were able to detect a crack line with a width of 0.35 mm. In the experiments using head phantom, we were able to clearly detect the crack lines in the phantom. These results indicate that our proposed method will be useful for the automated detection of skull fracture in CT images.
UR - http://www.scopus.com/inward/record.url?scp=85009067468&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009067468&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2016.7592202
DO - 10.1109/EMBC.2016.7592202
M3 - Conference contribution
C2 - 28269720
AN - SCOPUS:85009067468
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 6437
EP - 6440
BT - 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Y2 - 16 August 2016 through 20 August 2016
ER -