TY - JOUR
T1 - Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury.
AU - Ji, Haofeng
AU - Shen, Xiuda
AU - Gao, Feng
AU - Ke, Bibo
AU - Freitas, Maria Cecilia S.
AU - Uchida, Yoichiro
AU - Busuttil, Ronald W.
AU - Zhai, Yuan
AU - Kupiec-Weglinski, Jerzy W.
PY - 2010/10
Y1 - 2010/10
N2 - Programmed death-1 (PD-1)/B7-H1 costimulation acts as a negative regulator of host alloimmune responses. Although CD4 T cells mediate innate immunity-dominated ischemia and reperfusion injury (IRI) in the liver, the underlying mechanisms remain to be elucidated. This study focused on the role of PD-1/B7-H1 negative signaling in liver IRI. We used an established mouse model of partial liver warm ischemia (90 minutes) followed by reperfusion (6 hours). Although disruption of PD-1 signaling after anti-B7-H1 monoclonal antibody treatment augmented hepatocellular damage, its stimulation following B7-H1 immunoglobulin (B7-H1Ig) fusion protected livers from IRI, as evidenced by low serum alanine aminotransferase levels and well-preserved liver architecture. The therapeutic potential of B7-H1 engagement was evident by diminished intrahepatic T lymphocyte, neutrophil, and macrophage infiltration/activation; reduced cell necrosis/apoptosis but enhanced anti-necrotic/apoptotic Bcl-2/Bcl-xl; and decreased proinflammatory chemokine/cytokine gene expression in parallel with selectively increased interleukin (IL)-10. Neutralization of IL-10 re-created liver IRI and rendered B7-H1Ig-treated hosts susceptible to IRI. These findings were confirmed in T cell-macrophage in vitro coculture in which B7-H1Ig diminished tumor necrosis factor-α/IL-6 levels in an IL-10-dependent manner. Our novel findings document the essential role of the PD-1/B7-H1 pathway in liver IRI. CONCLUSION: This study is the first to demonstrate that stimulating PD-1 signals ameliorated liver IRI by inhibiting T cell activation and Kupffer cell/macrophage function. Harnessing mechanisms of negative costimulation by PD-1 upon T cell-Kupffer cell cross-talk may be instrumental in the maintenance of hepatic homeostasis by minimizing organ damage and promoting IL-10-dependent cytoprotection.
AB - Programmed death-1 (PD-1)/B7-H1 costimulation acts as a negative regulator of host alloimmune responses. Although CD4 T cells mediate innate immunity-dominated ischemia and reperfusion injury (IRI) in the liver, the underlying mechanisms remain to be elucidated. This study focused on the role of PD-1/B7-H1 negative signaling in liver IRI. We used an established mouse model of partial liver warm ischemia (90 minutes) followed by reperfusion (6 hours). Although disruption of PD-1 signaling after anti-B7-H1 monoclonal antibody treatment augmented hepatocellular damage, its stimulation following B7-H1 immunoglobulin (B7-H1Ig) fusion protected livers from IRI, as evidenced by low serum alanine aminotransferase levels and well-preserved liver architecture. The therapeutic potential of B7-H1 engagement was evident by diminished intrahepatic T lymphocyte, neutrophil, and macrophage infiltration/activation; reduced cell necrosis/apoptosis but enhanced anti-necrotic/apoptotic Bcl-2/Bcl-xl; and decreased proinflammatory chemokine/cytokine gene expression in parallel with selectively increased interleukin (IL)-10. Neutralization of IL-10 re-created liver IRI and rendered B7-H1Ig-treated hosts susceptible to IRI. These findings were confirmed in T cell-macrophage in vitro coculture in which B7-H1Ig diminished tumor necrosis factor-α/IL-6 levels in an IL-10-dependent manner. Our novel findings document the essential role of the PD-1/B7-H1 pathway in liver IRI. CONCLUSION: This study is the first to demonstrate that stimulating PD-1 signals ameliorated liver IRI by inhibiting T cell activation and Kupffer cell/macrophage function. Harnessing mechanisms of negative costimulation by PD-1 upon T cell-Kupffer cell cross-talk may be instrumental in the maintenance of hepatic homeostasis by minimizing organ damage and promoting IL-10-dependent cytoprotection.
UR - http://www.scopus.com/inward/record.url?scp=77957931504&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957931504&partnerID=8YFLogxK
U2 - 10.1002/hep.23843
DO - 10.1002/hep.23843
M3 - Article
C2 - 20815020
AN - SCOPUS:77957931504
SN - 0270-9139
VL - 52
SP - 1380
EP - 1389
JO - Hepatology
JF - Hepatology
IS - 4
ER -