Quantifying the quality of hand movement in stroke patients through three-dimensional curvature

Rieko Osu, Kazuko Ota, Toshiyuki Fujiwara, Yohei Otaka, Mitsuo Kawato, Meigen Liu

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Background: To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS) evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods. Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test) scores ranging from 2 (incomplete performance) to 4 (mild clumsiness) were recruited. Nine healthy participant with a SIAS score of 5 (normal) also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results: There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC) correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable from paretic movements. Conclusions: Measurement based on curvature was able to quantify movement irregularities and matched well with the examiner's observations. The results suggest that the quality of paretic movements is well characterized using spatial smoothness represented by curvature. The smaller computational costs associated with this measurement suggest that this method has potential clinical utility.

Original languageEnglish
Article number62
JournalJournal of NeuroEngineering and Rehabilitation
Volume8
Issue number1
DOIs
Publication statusPublished - 01-11-2011

Fingerprint

Hand
Stroke
Healthy Volunteers
Upper Extremity
Glass
Mouth
Arm
Plastics
Knee
Costs and Cost Analysis

All Science Journal Classification (ASJC) codes

  • Rehabilitation
  • Health Informatics

Cite this

Osu, Rieko ; Ota, Kazuko ; Fujiwara, Toshiyuki ; Otaka, Yohei ; Kawato, Mitsuo ; Liu, Meigen. / Quantifying the quality of hand movement in stroke patients through three-dimensional curvature. In: Journal of NeuroEngineering and Rehabilitation. 2011 ; Vol. 8, No. 1.
@article{f3cc91d1f2f045559baadeba432924e7,
title = "Quantifying the quality of hand movement in stroke patients through three-dimensional curvature",
abstract = "Background: To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS) evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods. Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test) scores ranging from 2 (incomplete performance) to 4 (mild clumsiness) were recruited. Nine healthy participant with a SIAS score of 5 (normal) also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results: There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC) correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable from paretic movements. Conclusions: Measurement based on curvature was able to quantify movement irregularities and matched well with the examiner's observations. The results suggest that the quality of paretic movements is well characterized using spatial smoothness represented by curvature. The smaller computational costs associated with this measurement suggest that this method has potential clinical utility.",
author = "Rieko Osu and Kazuko Ota and Toshiyuki Fujiwara and Yohei Otaka and Mitsuo Kawato and Meigen Liu",
year = "2011",
month = "11",
day = "1",
doi = "10.1186/1743-0003-8-62",
language = "English",
volume = "8",
journal = "Journal of NeuroEngineering and Rehabilitation",
issn = "1743-0003",
publisher = "BioMed Central",
number = "1",

}

Quantifying the quality of hand movement in stroke patients through three-dimensional curvature. / Osu, Rieko; Ota, Kazuko; Fujiwara, Toshiyuki; Otaka, Yohei; Kawato, Mitsuo; Liu, Meigen.

In: Journal of NeuroEngineering and Rehabilitation, Vol. 8, No. 1, 62, 01.11.2011.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Quantifying the quality of hand movement in stroke patients through three-dimensional curvature

AU - Osu, Rieko

AU - Ota, Kazuko

AU - Fujiwara, Toshiyuki

AU - Otaka, Yohei

AU - Kawato, Mitsuo

AU - Liu, Meigen

PY - 2011/11/1

Y1 - 2011/11/1

N2 - Background: To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS) evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods. Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test) scores ranging from 2 (incomplete performance) to 4 (mild clumsiness) were recruited. Nine healthy participant with a SIAS score of 5 (normal) also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results: There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC) correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable from paretic movements. Conclusions: Measurement based on curvature was able to quantify movement irregularities and matched well with the examiner's observations. The results suggest that the quality of paretic movements is well characterized using spatial smoothness represented by curvature. The smaller computational costs associated with this measurement suggest that this method has potential clinical utility.

AB - Background: To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS) evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods. Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test) scores ranging from 2 (incomplete performance) to 4 (mild clumsiness) were recruited. Nine healthy participant with a SIAS score of 5 (normal) also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results: There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC) correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable from paretic movements. Conclusions: Measurement based on curvature was able to quantify movement irregularities and matched well with the examiner's observations. The results suggest that the quality of paretic movements is well characterized using spatial smoothness represented by curvature. The smaller computational costs associated with this measurement suggest that this method has potential clinical utility.

UR - http://www.scopus.com/inward/record.url?scp=80055008068&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80055008068&partnerID=8YFLogxK

U2 - 10.1186/1743-0003-8-62

DO - 10.1186/1743-0003-8-62

M3 - Article

VL - 8

JO - Journal of NeuroEngineering and Rehabilitation

JF - Journal of NeuroEngineering and Rehabilitation

SN - 1743-0003

IS - 1

M1 - 62

ER -