Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170

Masaki Fukata, Takashi Watanabe, Jun Noritake, Masato Nakagawa, Masaki Yamaga, Shinya Kuroda, Yoshiharu Matsuura, Akihiro Iwamatsu, Franck Perez, Kozo Kaibuchi

Research output: Contribution to journalArticlepeer-review

468 Citations (Scopus)

Abstract

Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.

Original languageEnglish
Pages (from-to)873-885
Number of pages13
JournalCell
Volume109
Issue number7
DOIs
Publication statusPublished - 28-06-2002
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170'. Together they form a unique fingerprint.

Cite this