Reversal of hippocampal neuronal maturation by serotonergic antidepressants

Katsunori Kobayashi, Yumiko Ikeda, Atsushi Sakai, Nobuyuki Yamasaki, Eisuke Haneda, Tsuyoshi Miyakawa, Hidenori Suzuki

Research output: Contribution to journalArticlepeer-review

188 Citations (Scopus)

Abstract

Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Hereweshow a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as "dematuration" of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT4 receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT4 receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT4 receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development.

Original languageEnglish
Pages (from-to)8434-8439
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume107
Issue number18
DOIs
Publication statusPublished - 04-05-2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Reversal of hippocampal neuronal maturation by serotonergic antidepressants'. Together they form a unique fingerprint.

Cite this