Abstract
The free-energy-based reinforcement learning is a new approach to handling high-dimensional states and actions. We investigate its properties using a new experimental platform called the digit floor task. In this task, the highdimensional pixel data of hand-written digits were directly used as sensory inputs to the reinforcement learning agent. The simulation results showed the robustness of the free-energy-based reinforcement learning method against noise applied in both the training and testing phases. In addition, reward-dependent sensory representations were found in the distributed activation patterns of hidden units. The representations coded in a distributed fashion persisted even when the number of hidden nodes were varied.
Original language | English |
---|---|
Pages (from-to) | 597-610 |
Number of pages | 14 |
Journal | Neural Network World |
Volume | 19 |
Issue number | 5 |
Publication status | Published - 2009 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Software
- General Neuroscience
- Hardware and Architecture
- Artificial Intelligence