TY - JOUR
T1 - Role of nitric oxide and cyclic GMP in the dizocilpine-induced impairment of spontaneous alternation behavior in mice
AU - Yamada, K.
AU - Hiramatsu, M.
AU - Noda, Y.
AU - Mamiya, T.
AU - Murai, M.
AU - Kameyama, T.
AU - Komori, Y.
AU - Nikai, T.
AU - Sugihara, H.
AU - Nabeshima, Toshitaka
N1 - Funding Information:
This study was supported, in part, by an SRF Grant for Biomedical Research and by grants from the Japanese Ministry of Health and Welfare Foundation for Gerontological Science Research (94A-2405), the Uehara Memorial Foundation, the Ishida Foundation, and the Ministry of Education, Science and Culture, Japan (No. 07557009).
PY - 1996/7/19
Y1 - 1996/7/19
N2 - The activation of N-methyl-D-aspartate receptors induces the synthesis of nitric oxide, which activates soluble guanylate cyclase and leads to the formation of cyclic GMP in the brain. The inhibition of nitric oxide production, as well as the blockade of N-methyl-D-aspartate receptors, has been reported to prevent the induction of hippocampal long-term potentiation and learning and memory formation in vivo, although the effects of inhibitors of nitric oxide synthase are still controversial. We investigated the putative role of nitric oxide and cyclic GMP in dizocilpine-induced memory impairment in mice. The nitric oxide synthase inhibitors, N(G)- nitro-L-arginine methyl ester and 7-nitro indazole, as well as dizocilpine, a non competitive N-methyl-D-aspartate receptor antagonist, dose-dependently impaired spatial working memory in mice, assessed by their spontaneous alternation behavior in a Y-maze. The inhibitory effects of both N(G)- nitro-L-arginine methyl ester and dizocilpine on their behavior were completely reversed by 8-bromo-cyclic GMP. Cyclic GMP levels in the cerebellum were reduced by treatment with dizocilpine. N(G)-Nitro-L-arginine methyl ester and 7-nitro indazole reduced cyclic GMP levels in the cerebral cortex/hippocampus and cerebellum, and the suppressive effect of N(G)- nitro-L-arginine methyl ester on cyclic GMP levels in the cerebral cortex/hippocampus was reversed by co-treatment with L-arginine. Cyclic AMP levels in the brain were not affected by treatment with either dizocilpine, N(G)-nitro-L-arginine methyl ester, or 7-nitro indazole. Neither N(G)- nitro-L-arginine methyl ester nor L-arginine had any effect on monoamine and acetylcholine metabolism in the brain. These results suggest that the reduction in nitric oxide/cyclic GMP production in the brain may be responsible for dizocilpine-induced impairment of spontaneous alternation behavior in a Y-maze.
AB - The activation of N-methyl-D-aspartate receptors induces the synthesis of nitric oxide, which activates soluble guanylate cyclase and leads to the formation of cyclic GMP in the brain. The inhibition of nitric oxide production, as well as the blockade of N-methyl-D-aspartate receptors, has been reported to prevent the induction of hippocampal long-term potentiation and learning and memory formation in vivo, although the effects of inhibitors of nitric oxide synthase are still controversial. We investigated the putative role of nitric oxide and cyclic GMP in dizocilpine-induced memory impairment in mice. The nitric oxide synthase inhibitors, N(G)- nitro-L-arginine methyl ester and 7-nitro indazole, as well as dizocilpine, a non competitive N-methyl-D-aspartate receptor antagonist, dose-dependently impaired spatial working memory in mice, assessed by their spontaneous alternation behavior in a Y-maze. The inhibitory effects of both N(G)- nitro-L-arginine methyl ester and dizocilpine on their behavior were completely reversed by 8-bromo-cyclic GMP. Cyclic GMP levels in the cerebellum were reduced by treatment with dizocilpine. N(G)-Nitro-L-arginine methyl ester and 7-nitro indazole reduced cyclic GMP levels in the cerebral cortex/hippocampus and cerebellum, and the suppressive effect of N(G)- nitro-L-arginine methyl ester on cyclic GMP levels in the cerebral cortex/hippocampus was reversed by co-treatment with L-arginine. Cyclic AMP levels in the brain were not affected by treatment with either dizocilpine, N(G)-nitro-L-arginine methyl ester, or 7-nitro indazole. Neither N(G)- nitro-L-arginine methyl ester nor L-arginine had any effect on monoamine and acetylcholine metabolism in the brain. These results suggest that the reduction in nitric oxide/cyclic GMP production in the brain may be responsible for dizocilpine-induced impairment of spontaneous alternation behavior in a Y-maze.
UR - http://www.scopus.com/inward/record.url?scp=0030593430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030593430&partnerID=8YFLogxK
U2 - 10.1016/0306-4522(96)00161-3
DO - 10.1016/0306-4522(96)00161-3
M3 - Article
C2 - 8865189
AN - SCOPUS:0030593430
SN - 0306-4522
VL - 74
SP - 365
EP - 374
JO - Neuroscience
JF - Neuroscience
IS - 2
ER -