TY - JOUR
T1 - Role of the thyroid gland in expression of the thyroid phenotype of Sbp2-deficient mice
AU - Fujisawa, Haruki
AU - Korwutthikulrangsri, Manassawee
AU - Fu, Jiao
AU - Liao, Xiao Hui
AU - Dumitrescu, Alexandra M.
N1 - Publisher Copyright:
© Endocrine Society 2019. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Selenocysteine insertion sequence-binding protein 2, SBP2 (SECISBP2), is required for selenoprotein synthesis. Partial SBP2 deficiency syndrome manifests characteristic thyroid function tests. The Sbp2 deficiency mouse model, Sbp2 inducible conditional knockout (iCKO), replicates this thyroid phenotype and was used for pathophysiologic investigations. As selenoproteins have an antioxidative role in thyroid gland function, their deficiencies have potential to affect thyroid hormone (TH) synthesis. Sbp2 iCKO mice had larger thyroids relative to body weight and increased thyroidal thyroxine (T4) and triiodothyronine (T3) content while 5' deiodinases enzymatic activities were decreased. Possible mechanisms for the discrepancy between the increased thyroidal T3 and normal circulating T3 were investigated in dynamic experiments. Treatment with bovine thyroid-stimulating hormone (TSH) resulted in increased delta T4 in Sbp2 iCKO mice, indicating increased availability of preformed thyroidal TH. Next, the recovery of TH levels was evaluated after withdrawal of chemical suppression. At one day, Sbp2 iCKO mice had higher serum and thyroidal T3 concomitant with lower TSH, confirming increased capacity of TH synthesis in Sbp2 deficiency. Decreased TH secretion was ruled out as serum and thyroidal TH were high in Sbp2 iCKO mice. Treatment with a low-iodine diet also ruled out thyroidal secretion defect as both serum levels and thyroidal TH content similarly declined over time in Sbp2-deficient mice compared to wild-type (Wt) mice. This study provides evidence for unsuspected changes in the thyroid gland that contribute to the thyroid phenotype of Sbp2 deficiency, with increased thyroidal T4 and T3 content in the setting of increased TH synthesis capacity contributing to the circulating TH levels while thyroidal secretion is preserved.
AB - Selenocysteine insertion sequence-binding protein 2, SBP2 (SECISBP2), is required for selenoprotein synthesis. Partial SBP2 deficiency syndrome manifests characteristic thyroid function tests. The Sbp2 deficiency mouse model, Sbp2 inducible conditional knockout (iCKO), replicates this thyroid phenotype and was used for pathophysiologic investigations. As selenoproteins have an antioxidative role in thyroid gland function, their deficiencies have potential to affect thyroid hormone (TH) synthesis. Sbp2 iCKO mice had larger thyroids relative to body weight and increased thyroidal thyroxine (T4) and triiodothyronine (T3) content while 5' deiodinases enzymatic activities were decreased. Possible mechanisms for the discrepancy between the increased thyroidal T3 and normal circulating T3 were investigated in dynamic experiments. Treatment with bovine thyroid-stimulating hormone (TSH) resulted in increased delta T4 in Sbp2 iCKO mice, indicating increased availability of preformed thyroidal TH. Next, the recovery of TH levels was evaluated after withdrawal of chemical suppression. At one day, Sbp2 iCKO mice had higher serum and thyroidal T3 concomitant with lower TSH, confirming increased capacity of TH synthesis in Sbp2 deficiency. Decreased TH secretion was ruled out as serum and thyroidal TH were high in Sbp2 iCKO mice. Treatment with a low-iodine diet also ruled out thyroidal secretion defect as both serum levels and thyroidal TH content similarly declined over time in Sbp2-deficient mice compared to wild-type (Wt) mice. This study provides evidence for unsuspected changes in the thyroid gland that contribute to the thyroid phenotype of Sbp2 deficiency, with increased thyroidal T4 and T3 content in the setting of increased TH synthesis capacity contributing to the circulating TH levels while thyroidal secretion is preserved.
UR - http://www.scopus.com/inward/record.url?scp=85097210265&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097210265&partnerID=8YFLogxK
U2 - 10.1210/endocr/bqz032
DO - 10.1210/endocr/bqz032
M3 - Article
C2 - 31826256
AN - SCOPUS:85097210265
VL - 161
JO - Endocrinology
JF - Endocrinology
SN - 0013-7227
IS - 5
ER -