TY - JOUR
T1 - Roles of glutamate receptor δ2 subunit (GluRδ2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development
AU - Hashimoto, Kouichi
AU - Ichikawa, Ryoichi
AU - Takechi, Hajime
AU - Inoue, Yoshiro
AU - Aiba, Atsu
AU - Sakimura, Kenji
AU - Mishina, Masayoshi
AU - Hashikawa, Tsutomu
AU - Konnerth, Arthur
AU - Watanabe, Masahiko
AU - Kano, Masanobu
PY - 2001/12/15
Y1 - 2001/12/15
N2 - Climbing fiber (CF) synapse formation onto cerebellar Purkinje cells (PCs) is critically dependent on the synaptogenesis from parallel fibers (PFs), the other input to PCs. Previous studies revealed that deletion of the glutamate receptor δ2 subunit (GluRδ2) gene results in persistent multiple CF innervation of PCs with impaired PF synaptogenesis, whereas mutation of the metabotropic glutamate receptor subtype 1 (mGluR1) gene causes multiple CF innervation with normal PF synaptogenesis. We demonstrate that atypical CF-mediated EPSCs (CF-EPSCs) with slow rise times and small amplitudes coexisted with typical CF-EPSCs with fast rise times and large amplitudes in PCs from GluRδ2 mutant cerebellar slices. CF-EPSCs in mGluR1 mutant and wild-type PCs had fast rise times. Atypical slow CF responses of GluRδ2 mutant PCs were associated with voltage-dependent Ca2+ signals that were confined to PC distal dendrites. In the wild-type and mGluR1 mutant PCs, CF-induced Ca2+ signals involved both proximal and distal dendrites. Morphologically, CFs of GluRδ2 mutant mice extended to the superficial regions of the molecular layer, whereas those of wild-type and mGluR1 mutant mice did not innervate the superficial one-fifth of the molecular layer. It is therefore likely that surplus CFs of GluRδ2 mutant mice form ectopic synapses onto distal dendrites, whereas those of wild-type and mGluR1 mutant mice innervate proximal dendrites. These findings suggest that GluRδ2 is required for consolidating PF synapses and restricting CF synapses to the proximal dendrites, whereas the mGluR1-signaling pathway does not affect PF synaptogenesis but is involved in eliminating surplus CF synapses at the proximal dendrites.
AB - Climbing fiber (CF) synapse formation onto cerebellar Purkinje cells (PCs) is critically dependent on the synaptogenesis from parallel fibers (PFs), the other input to PCs. Previous studies revealed that deletion of the glutamate receptor δ2 subunit (GluRδ2) gene results in persistent multiple CF innervation of PCs with impaired PF synaptogenesis, whereas mutation of the metabotropic glutamate receptor subtype 1 (mGluR1) gene causes multiple CF innervation with normal PF synaptogenesis. We demonstrate that atypical CF-mediated EPSCs (CF-EPSCs) with slow rise times and small amplitudes coexisted with typical CF-EPSCs with fast rise times and large amplitudes in PCs from GluRδ2 mutant cerebellar slices. CF-EPSCs in mGluR1 mutant and wild-type PCs had fast rise times. Atypical slow CF responses of GluRδ2 mutant PCs were associated with voltage-dependent Ca2+ signals that were confined to PC distal dendrites. In the wild-type and mGluR1 mutant PCs, CF-induced Ca2+ signals involved both proximal and distal dendrites. Morphologically, CFs of GluRδ2 mutant mice extended to the superficial regions of the molecular layer, whereas those of wild-type and mGluR1 mutant mice did not innervate the superficial one-fifth of the molecular layer. It is therefore likely that surplus CFs of GluRδ2 mutant mice form ectopic synapses onto distal dendrites, whereas those of wild-type and mGluR1 mutant mice innervate proximal dendrites. These findings suggest that GluRδ2 is required for consolidating PF synapses and restricting CF synapses to the proximal dendrites, whereas the mGluR1-signaling pathway does not affect PF synaptogenesis but is involved in eliminating surplus CF synapses at the proximal dendrites.
UR - http://www.scopus.com/inward/record.url?scp=0035894880&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035894880&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.21-24-09701.2001
DO - 10.1523/jneurosci.21-24-09701.2001
M3 - Article
C2 - 11739579
AN - SCOPUS:0035894880
SN - 0270-6474
VL - 21
SP - 9701
EP - 9712
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 24
ER -