TY - JOUR
T1 - Roles of stretch-activated cation channel and Rho-kinase in the spontaneous contraction of airway smooth muscle
AU - Ito, Satoru
AU - Kume, Hiroaki
AU - Oguma, Tetsuya
AU - Ito, Yasushi
AU - Kondo, Masashi
AU - Shimokata, Kaoru
AU - Suki, Béla
AU - Naruse, Keiji
N1 - Funding Information:
This work was supported by Grant-in Aid from the Ministry of Education Science, Sports, and Culture of Japan 17790531 (S. Ito) and 17590785 (H. Kume).
PY - 2006/12/15
Y1 - 2006/12/15
N2 - In guinea pigs, it is well-known that mechanical stretch of airway smooth muscle exhibits spontaneous tone which is mediated by cyclooxygenase (COX) activation. We tested the hypothesis that this spontaneous contraction of airway smooth muscle is mediated by stretch-activated non-selective cation channels and the Rho/Rho-kinase pathway, as well as COX-2 using a pharmacological approach. Isometric force and intracellular Ca2+ concentrations ([Ca2+]i) were assessed in isolated guinea pig tracheal smooth muscle tissues. The samples were stretched to a given level and the muscle behavior was monitored under isometric conditions. We observed an increase in [Ca2+]i and subsequent force generation over a 15-min period. The augmented [Ca2+]i and spontaneous contraction due to the stretch were markedly attenuated by application of Gd3+, an inhibitor of stretch-activated channels, and removal of extracellular Ca2+. In contrast, nifedipine only had a mild inhibitory effect on the contraction. (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexane-carboxamide (Y-27632; a Rho-kinase inhibitor) abolished the spontaneous contraction with no changes in [Ca2+]i. Simvastatin, which down-regulates Rho activity, also significantly inhibited the contraction. Moreover, indomethacin, an inhibitor of COX-1 and -2, and N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398; a COX-2 inhibitor) abolished the stretch-induced contraction without affecting [Ca2+]i, whereas the inhibitory effect of 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC560; a COX-1 inhibitor) on the contraction was much less. These findings demonstrated that Ca2+ entry via stretch-activated channels, the Rho/Rho-kinase pathway, and COX-2 are involved in the mechanotransduction in guinea pig tracheal smooth muscle. Additionally, while the Rho/Rho-kinase pathway and COX-2 regulate the spontaneous contraction independently of [Ca2+]i, COX-1 is not involved in the stretch-induced force generation.
AB - In guinea pigs, it is well-known that mechanical stretch of airway smooth muscle exhibits spontaneous tone which is mediated by cyclooxygenase (COX) activation. We tested the hypothesis that this spontaneous contraction of airway smooth muscle is mediated by stretch-activated non-selective cation channels and the Rho/Rho-kinase pathway, as well as COX-2 using a pharmacological approach. Isometric force and intracellular Ca2+ concentrations ([Ca2+]i) were assessed in isolated guinea pig tracheal smooth muscle tissues. The samples were stretched to a given level and the muscle behavior was monitored under isometric conditions. We observed an increase in [Ca2+]i and subsequent force generation over a 15-min period. The augmented [Ca2+]i and spontaneous contraction due to the stretch were markedly attenuated by application of Gd3+, an inhibitor of stretch-activated channels, and removal of extracellular Ca2+. In contrast, nifedipine only had a mild inhibitory effect on the contraction. (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexane-carboxamide (Y-27632; a Rho-kinase inhibitor) abolished the spontaneous contraction with no changes in [Ca2+]i. Simvastatin, which down-regulates Rho activity, also significantly inhibited the contraction. Moreover, indomethacin, an inhibitor of COX-1 and -2, and N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398; a COX-2 inhibitor) abolished the stretch-induced contraction without affecting [Ca2+]i, whereas the inhibitory effect of 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC560; a COX-1 inhibitor) on the contraction was much less. These findings demonstrated that Ca2+ entry via stretch-activated channels, the Rho/Rho-kinase pathway, and COX-2 are involved in the mechanotransduction in guinea pig tracheal smooth muscle. Additionally, while the Rho/Rho-kinase pathway and COX-2 regulate the spontaneous contraction independently of [Ca2+]i, COX-1 is not involved in the stretch-induced force generation.
UR - http://www.scopus.com/inward/record.url?scp=33750468007&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750468007&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2006.08.067
DO - 10.1016/j.ejphar.2006.08.067
M3 - Article
C2 - 17026989
AN - SCOPUS:33750468007
SN - 0014-2999
VL - 552
SP - 135
EP - 142
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
IS - 1-3
ER -