SIZE-specific dose estimate for lower-limb CT

Masanao Kobayashi, Yusei Nishihara, Tomonobu Haba, Yuta Matsunaga, Yasuki Asada, Shigeki Kobayashi

Research output: Contribution to journalArticlepeer-review

Abstract

The Computed Tomography Dose Index (CTDI) is an indicator for dose management in computed tomography (CT), but has limited use for patient dosimetry. To evaluate the patient dose, the size-specific dose estimate (SSDE), reported by the American Association of Physics in Medicine task groups 204, 220, and 293, must be calculated by the CTDIvol(z) displayed on the CT console, and the conversion factor f(D(z)) from the effective diameter (DEff) or water equivalent diameter (Dw). However, no reports have verified the appropriateness of using the 320-mm diameter phantom for dose assessment in CT examinations involving the lower limbs. Therefore, we validated a new method for evaluating the SSDE(z) of the lower limbs, using two 160-mm diameter phantoms instead of the 320-mm diameter phantom. The CTDIvol(z) obtained from Monte Carlo (MC) simulation study was reliable because they were almost the same as obtained in a dosimetry study. The conversion factor f (D (zl.l.)) for the lower limbs was evaluated based on the CTDIvol(z) obtained by MC simulation performed using two polymethyl methacrylate cylinder phantoms of 160-mm diameter. The MC simulation was performed by the International Commission on Radiological Protection publication 135 reference adult phantom and was used to evaluate the absorbed dose of the pelvis, thighs, knees, and ankles. The dose showing the greatest difference was the thighs, which was 8.3 mGy (16%) lower than the absorbed dose. Thus, the SSDE (zl.l.) could be estimated from the CTDIvol320(z) displayed on the CT scanner console.

Original languageEnglish
JournalPhysical and Engineering Sciences in Medicine
DOIs
Publication statusAccepted/In press - 2022

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Radiological and Ultrasound Technology
  • Biophysics
  • Biomedical Engineering
  • Instrumentation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'SIZE-specific dose estimate for lower-limb CT'. Together they form a unique fingerprint.

Cite this