Spatiotemporally different DNA repair systems participate in epstein-barr virus genome maturation

Atsuko Sugimoto, Teru Kanda, Yoriko Yamashita, Takayuki Murata, Shinichi Saito, Daisuke Kawashima, Hiroki Isomura, Yukihiro Nishiyama, Tatsuya Tsurumi

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Productive replication of Epstein-Barr virus occurs in discrete sites in nuclei, called replication compartments, where viral DNA replication proteins and host homologous recombinational repair (HRR) and mismatch repair (MMR) factors are recruited. Three-dimensional (3D) surface reconstruction imaging clarified the spatial arrangements of these factors within the replication compartments. Subnuclear domains, designated BMRF1 cores, which were highly enriched in viral polymerase processivity factor BMRF1 could be identified inside the replication compartments. Pulse-chase experiments revealed that newly synthesized viral genomes organized around the BMRF1 cores were transferred inward. HRR factors could be demonstrated mainly outside BMRF1 cores, where de novo synthesis of viral DNA was ongoing, whereas MMR factors were found predominantly inside. These results imply that de novo synthesis of viral DNA is coupled with HRR outside the cores, followed by MMR inside cores for quality control of replicated viral genomes. Thus, our approach unveiled a viral genome manufacturing plant.

Original languageEnglish
Pages (from-to)6127-6135
Number of pages9
JournalJournal of Virology
Volume85
Issue number13
DOIs
Publication statusPublished - 07-2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'Spatiotemporally different DNA repair systems participate in epstein-barr virus genome maturation'. Together they form a unique fingerprint.

Cite this