Spike encoding of olfactory receptor cells

Kenji Narusuye, Fusao Kawai, Ei Ichi Miyachi

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

Olfaction begins with the transduction of the information carried by odorants into electrical signals in olfactory receptor cells (ORCs). The binding of odor molecules to specific receptor proteins on the ciliary surface of ORCs induces the receptor potentials. This initial excitation causes a slow and graded depolarizing voltage change, which is encoded into a train of action potentials. Action potentials of ORCs are generated by voltage-gated Na+ currents and T-type Ca2+ currents in the somatic membrane. Isolated ORCs, which have lost their cilia during the dissociation procedure, are known to exhibit spike frequency accommodation by injecting the steady current. This raises the possibility that somatic ionic channels in ORCs may serve for odor adaptation at the level of spike encoding, although odor adaptation is mainly accomplished by the ciliary transduction machinery. This review discusses current knowledge concerning the mechanisms of spike generation in ORCs. It also reviews how neurotransmitters and hormones modulate ionic currents and action potentials in ORCs.

Original languageEnglish
Pages (from-to)407-413
Number of pages7
JournalNeuroscience Research
Volume46
Issue number4
DOIs
Publication statusPublished - 01-08-2003

All Science Journal Classification (ASJC) codes

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Spike encoding of olfactory receptor cells'. Together they form a unique fingerprint.

Cite this