Stability of serum high-density lipoprotein-microRNAs for preanalytical conditions

Hiroaki Ishikawa, Hiroya Yamada, Nao Taromaru, Kanako Kondo, Ayuri Nagura, Mirai Yamazaki, Yoshitaka Ando, Eiji Munetsuna, Koji Suzuki, Koji Ohashi, Ryoji Teradaira

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


Background: Recently, several studies have shown that microRNAs are present in high-density lipoprotein, and high-density lipoprotein-microRNA may be a promising disease biomarker. We investigated the stability of high-density lipoprotein-microRNAs in different storage conditions as this is an important issue for its application to the field of clinical research. Methods: microRNAs were extracted from the high-density lipoprotein fraction that was purified from the serum. miR-135 a and miR-223, which are known to be present in high-density lipoprotein, were quantified by quantitative real-time PCR. The influence of preanalytical parameters on the analysis of high-density lipoprotein-miRNAs was examined by the effect of RNase, storage conditions, and freezing and thawing. Results: The concentrations of microRNA in high-density lipoprotein were not altered by RNase A treatment (0–100 U/mL). No significant change in these microRNAs was observed after storing serum at room temperature or 4℃ for 0–24 h, and there was a similar result in the cryopreservation for up to two weeks. Also, high-density lipoprotein-microRNAs were stable for, at least, up to five freeze–thaw cycles. Conclusions: These results demonstrated that high-density lipoprotein-microRNAs are relatively resistant to various storage conditions. This study provides new and important information on the stability of high-density lipoprotein-microRNAs.

Original languageEnglish
Pages (from-to)134-142
Number of pages9
JournalAnnals of Clinical Biochemistry
Issue number1
Publication statusPublished - 01-01-2017

All Science Journal Classification (ASJC) codes

  • Clinical Biochemistry


Dive into the research topics of 'Stability of serum high-density lipoprotein-microRNAs for preanalytical conditions'. Together they form a unique fingerprint.

Cite this