TY - JOUR
T1 - Stratified epithelial sheets engineered from a single adult murine corneal/limbal progenitor cell
AU - Kawakita, Tetsuya
AU - Shimmura, Shigeto
AU - Hornia, Armand
AU - Higa, Kazunari
AU - Tseng, Scheffer C.G.
PY - 2008/8
Y1 - 2008/8
N2 - The limbal region of the adult cornea contains stem cells which are ultimately responsible for regeneration of the corneal epithelium during wound repair. However, primarily-isolated murine corneal/limbal epithelial cells rapidly senesce on plastic in a serum-free low [Ca2+] medium, suggesting only transit amplifying cells are promoted. We developed a novel expansion method by seeding at a low cell density (<500 cells/cm2) and prolonging each culture time beyond the lifespan of transit amplifying cells (4 weeks). Expanded cells were uniformly small, negative to K12 keratin, but positive for p63 nuclear staining, and could be subcultured beyond 100 passages. After limiting dilution, one clone (TKE2) was selected that exhibited single cell clonal expansion with a doubling time of 34.2 hrs, and had normal karyotyping, but no anchorage-independent growth. A single cell could be continually expanded to a confluent monolayer on denuded amniotic membrane and became stratified by exposing to the air-medium interface. The resultant stratified epithelium expressed K14 keratin, involucrin, connexin 43 and p63, but not K12 keratin or Pax 6. However, expression of K12 could be up-regulated by increasing extracellular calcium concentration and addition of foetal bovine serum (FBS) at P12, but less so at P85. Therefore, this murine lim-bal/corneal epithelium-derived progenitor cell line still retained the plasticity for adopting corneal lineage differentiation, could be useful for investigating limbal niche cues that may promote corneal epithelial fate decision.
AB - The limbal region of the adult cornea contains stem cells which are ultimately responsible for regeneration of the corneal epithelium during wound repair. However, primarily-isolated murine corneal/limbal epithelial cells rapidly senesce on plastic in a serum-free low [Ca2+] medium, suggesting only transit amplifying cells are promoted. We developed a novel expansion method by seeding at a low cell density (<500 cells/cm2) and prolonging each culture time beyond the lifespan of transit amplifying cells (4 weeks). Expanded cells were uniformly small, negative to K12 keratin, but positive for p63 nuclear staining, and could be subcultured beyond 100 passages. After limiting dilution, one clone (TKE2) was selected that exhibited single cell clonal expansion with a doubling time of 34.2 hrs, and had normal karyotyping, but no anchorage-independent growth. A single cell could be continually expanded to a confluent monolayer on denuded amniotic membrane and became stratified by exposing to the air-medium interface. The resultant stratified epithelium expressed K14 keratin, involucrin, connexin 43 and p63, but not K12 keratin or Pax 6. However, expression of K12 could be up-regulated by increasing extracellular calcium concentration and addition of foetal bovine serum (FBS) at P12, but less so at P85. Therefore, this murine lim-bal/corneal epithelium-derived progenitor cell line still retained the plasticity for adopting corneal lineage differentiation, could be useful for investigating limbal niche cues that may promote corneal epithelial fate decision.
UR - http://www.scopus.com/inward/record.url?scp=49549112965&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49549112965&partnerID=8YFLogxK
U2 - 10.1111/j.1582-4934.2008.00297.x
DO - 10.1111/j.1582-4934.2008.00297.x
M3 - Article
C2 - 18318692
AN - SCOPUS:49549112965
SN - 1582-1838
VL - 12
SP - 1303
EP - 1316
JO - Journal of Cellular and Molecular Medicine
JF - Journal of Cellular and Molecular Medicine
IS - 4
ER -