TY - JOUR
T1 - Structural equation modeling (SEM) of kidney function markers and longitudinal CVD risk assessment
AU - Fujii, Ryosuke
AU - Melotti, Roberto
AU - Gögele, Martin
AU - Barin, Laura
AU - Ghasemi-Semeskandeh, Dariush
AU - Barbieri, Giulia
AU - Pramstaller, Peter P.
AU - Pattaro, Cristian
N1 - Publisher Copyright:
Copyright: © 2023 Fujii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/4
Y1 - 2023/4
N2 - Lower kidney function is known to enhance cardiovascular disease (CVD) risk. It is unclear which estimated glomerular filtration rate (eGFR) equation best predict an increased CVD risk and if prediction can be improved by integration of multiple kidney function markers. We performed structural equation modeling (SEM) of kidney markers and compared the performance of the resulting pooled indexes with established eGFR equations to predict CVD risk in a 10-year longitudinal population-based design. We split the study sample into a set of participants with only baseline data (n = 647; model-building set) and a set with longitudinal data (n = 670; longitudinal set). In the model-building set, we fitted five SEM models based on serum creatinine or creatinine-based eGFR (eGFRcre), cystatin C or cystatin-based eGFR (eGFRcys), uric acid (UA), and blood urea nitrogen (BUN). In the longitudinal set, 10-year incident CVD risk was defined as a Framingham risk score (FRS)>5% and a pooled cohort equation (PCE)>5%. Predictive performances of the different kidney function indexes were compared using the C-statistic and the DeLong test. In the longitudinal set, a SEM-based estimate of latent kidney function based on eGFRcre, eGFRcys, UA, and BUN showed better prediction performance for both FRS>5% (C-statistic: 0.70; 95% CI: 0.65–0.74) and PCE>5% (C-statistic: 0.75; 95%CI: 0.71–0.79) than other SEM models and different eGFR formulas (DeLong test p-values<3.21×10−6 for FRS>5% and <1.49×10−9 for PCE>5%, respectively). However, the new derived marker could not outperform eGFRcys (DeLong test p-values = 0.88 for FRS>5% and 0.20 for PCE>5%, respectively). SEM is a promising approach to identify latent kidney function signatures. However, for incident CVD risk prediction, eGFRcys could still be preferrable given its simpler derivation.
AB - Lower kidney function is known to enhance cardiovascular disease (CVD) risk. It is unclear which estimated glomerular filtration rate (eGFR) equation best predict an increased CVD risk and if prediction can be improved by integration of multiple kidney function markers. We performed structural equation modeling (SEM) of kidney markers and compared the performance of the resulting pooled indexes with established eGFR equations to predict CVD risk in a 10-year longitudinal population-based design. We split the study sample into a set of participants with only baseline data (n = 647; model-building set) and a set with longitudinal data (n = 670; longitudinal set). In the model-building set, we fitted five SEM models based on serum creatinine or creatinine-based eGFR (eGFRcre), cystatin C or cystatin-based eGFR (eGFRcys), uric acid (UA), and blood urea nitrogen (BUN). In the longitudinal set, 10-year incident CVD risk was defined as a Framingham risk score (FRS)>5% and a pooled cohort equation (PCE)>5%. Predictive performances of the different kidney function indexes were compared using the C-statistic and the DeLong test. In the longitudinal set, a SEM-based estimate of latent kidney function based on eGFRcre, eGFRcys, UA, and BUN showed better prediction performance for both FRS>5% (C-statistic: 0.70; 95% CI: 0.65–0.74) and PCE>5% (C-statistic: 0.75; 95%CI: 0.71–0.79) than other SEM models and different eGFR formulas (DeLong test p-values<3.21×10−6 for FRS>5% and <1.49×10−9 for PCE>5%, respectively). However, the new derived marker could not outperform eGFRcys (DeLong test p-values = 0.88 for FRS>5% and 0.20 for PCE>5%, respectively). SEM is a promising approach to identify latent kidney function signatures. However, for incident CVD risk prediction, eGFRcys could still be preferrable given its simpler derivation.
UR - http://www.scopus.com/inward/record.url?scp=85153414762&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85153414762&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0280600
DO - 10.1371/journal.pone.0280600
M3 - Article
C2 - 37079513
AN - SCOPUS:85153414762
SN - 1932-6203
VL - 18
JO - PloS one
JF - PloS one
IS - 4 April
M1 - e0280600
ER -