TY - JOUR
T1 - Structural requirements of sphingosine molecules for inhibition of DNA primase
T2 - Biochemical and computational analyses
AU - Ito, Y.
AU - Tamiya-Koizumi, K.
AU - Koide, Y.
AU - Nakagawa, M.
AU - Kawade, T.
AU - Nishida, A.
AU - Murate, T.
AU - Takemura, M.
AU - Suzuki, M.
AU - Yoshida, S.
PY - 2001/9/25
Y1 - 2001/9/25
N2 - Using 28 chemically well-defined compounds containing D-erythro-sphingosine and its analogues, we analyzed structure-activity relationships for DNA primase inhibition. Biochemical studies demonstrated a positively charged amino group at C2 and a long aliphatic chain to be absolutely required for inhibition. Whereas C2-amino group is intact, sphingosine 1-phosphate was totally inactive. This result could be due to cancellation of positive charge of the amino group by the interaction with negatively charged C1-phosphate, since simulations with the software INSIGHT II showed these two groups to be close enough to interact. The hydroxyl group at C3 and trans-double bond at C4-C5 were also found to be important for the inhibition. Dehydroxylation of C3, as well as saturation or cis-conversion of the trans-double bond led to decrease of inhibitory activity. Despite saturation of the double bond, introduction of a hydroxyl group into C4 of dihydrosphingosine resulted in restoration of inhibition. Conversion of the double bond into a triple bond did not abolish but rather enhanced the inhibitory activity. Among sphingosine stereoisomers, the naturally occurring D-erythro-sphingosine proved to be the strongest inhibitor. To ascertain the contribution of the total conformation to the inhibition, especially of the long aliphatic chain, we constructed a 3D-quantitative structure-activity relationship model using the computer program Catalyst/HipHop on the basis of information described above. Analysis of the hypothesis model for active compounds revealed that the orientation of aliphatic chain, represented by the dihedral angle of C2-3-4-5, correlated well with the inhibition. Modifications such as deletion of the hydroxyl group at C3 or saturation of the C4-C5 double bond caused shifts in the dihedral angle of C2-3-4-5, with concomitant decrease in inhibitory activity.
AB - Using 28 chemically well-defined compounds containing D-erythro-sphingosine and its analogues, we analyzed structure-activity relationships for DNA primase inhibition. Biochemical studies demonstrated a positively charged amino group at C2 and a long aliphatic chain to be absolutely required for inhibition. Whereas C2-amino group is intact, sphingosine 1-phosphate was totally inactive. This result could be due to cancellation of positive charge of the amino group by the interaction with negatively charged C1-phosphate, since simulations with the software INSIGHT II showed these two groups to be close enough to interact. The hydroxyl group at C3 and trans-double bond at C4-C5 were also found to be important for the inhibition. Dehydroxylation of C3, as well as saturation or cis-conversion of the trans-double bond led to decrease of inhibitory activity. Despite saturation of the double bond, introduction of a hydroxyl group into C4 of dihydrosphingosine resulted in restoration of inhibition. Conversion of the double bond into a triple bond did not abolish but rather enhanced the inhibitory activity. Among sphingosine stereoisomers, the naturally occurring D-erythro-sphingosine proved to be the strongest inhibitor. To ascertain the contribution of the total conformation to the inhibition, especially of the long aliphatic chain, we constructed a 3D-quantitative structure-activity relationship model using the computer program Catalyst/HipHop on the basis of information described above. Analysis of the hypothesis model for active compounds revealed that the orientation of aliphatic chain, represented by the dihedral angle of C2-3-4-5, correlated well with the inhibition. Modifications such as deletion of the hydroxyl group at C3 or saturation of the C4-C5 double bond caused shifts in the dihedral angle of C2-3-4-5, with concomitant decrease in inhibitory activity.
UR - http://www.scopus.com/inward/record.url?scp=0035949535&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035949535&partnerID=8YFLogxK
U2 - 10.1021/bi010722i
DO - 10.1021/bi010722i
M3 - Article
C2 - 11560507
AN - SCOPUS:0035949535
SN - 0006-2960
VL - 40
SP - 11571
EP - 11577
JO - Biochemistry
JF - Biochemistry
IS - 38
ER -