Submillimeter-Resolution PET for High-Sensitivity Mouse Brain Imaging

Han Gyu Kang, Hideaki Tashima, Hidekatsu Wakizaka, Fumihiko Nishikido, Makoto Higuchi, Miwako Takahashi, Taiga Yamaya

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

PET is a powerful molecular imaging technique that can provide functional information on living objects. However, the spatial resolution of PET imaging has been limited to around 1 mm, which makes it difficult to visualize mouse brain function in detail. Here, we report an ultrahigh-resolution small-animal PET scanner we developed that can provide a resolution approaching 0.6 mm to visualize mouse brain function with unprecedented detail. Methods: The ultrahigh-resolution small-animal PET scanner has an inner diameter of 52.5 mm and axial coverage of 51.5 mm. The scanner consists of 4 rings, each of which has 16 depth-of-interaction detectors. Each depth-of-interaction detector consists of a 3-layer staggered lutetium yttrium orthosilicate crystal array with a pitch of 1 mm and a 4 × 4 silicon photomultiplier array. The physical performance was evaluated in accordance with the National Electrical Manufacturers Association NU4 protocol. Spatial resolution was evaluated with phantoms of various resolutions. In vivo glucose metabolism imaging of the mouse brain was performed. Results: Peak absolute sensitivity was 2.84% with an energy window of 400–600 keV. The 0.55-mm rod structure of a resolution phantom was resolved using an iterative algorithm. In vivo mouse brain imaging with 18F-FDG clearly identified the cortex, thalamus, and hypothalamus, which were barely distinguishable in a commercial preclinical PET scanner that we used for comparison. Conclusion: The ultrahigh-resolution small-animal PET scanner is a promising molecular imaging tool for neuroscience research using rodent models.

Original languageEnglish
Pages (from-to)978-985
Number of pages8
JournalJournal of Nuclear Medicine
Volume64
Issue number6
DOIs
Publication statusPublished - 01-06-2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Submillimeter-Resolution PET for High-Sensitivity Mouse Brain Imaging'. Together they form a unique fingerprint.

Cite this