TY - JOUR
T1 - Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype
AU - Ogawa, Mikako
AU - Nishiyama, Shingo
AU - Tsukada, Hideo
AU - Hatano, Kentaro
AU - Fuchigami, Takeshi
AU - Yamaguchi, Hiroshi
AU - Matsushima, Yoshitaka
AU - Ito, Kengo
AU - Magata, Yasuhiro
PY - 2010/4
Y1 - 2010/4
N2 - Introduction: The nicotinic acetylcholine receptor (nAChR) α7 subtype (α7 nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled α7 nAChR ligands, (R)-2-[11C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([11C](R)-MeQAA) and its isomer (S)-[11C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[11C]MeQAA for in vivo imaging of α7 nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for α7 nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for α7 nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([11C](R)-MeQAA: 7.68 and [11C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [11C](R)-MeQAA was slow in the hippocampus (α7 nAChR-rich region) but was rapid in the cerebellum (α7 nAChR-poor region). On the other hand, the clearance was fast for [11C](S)-MeQAA in all regions. The brain uptake of [11C](R)-MeQAA was decreased by methyllycaconitine (α7 nAChR antagonist) treatment. In monkeys, α7 nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [11C](R)-MeQAA, while the uptake was rather homogeneous for [11C](S)-MeQAA. Conclusions: [11C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for α7 nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain α7 nAChRs in vivo.
AB - Introduction: The nicotinic acetylcholine receptor (nAChR) α7 subtype (α7 nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled α7 nAChR ligands, (R)-2-[11C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([11C](R)-MeQAA) and its isomer (S)-[11C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[11C]MeQAA for in vivo imaging of α7 nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for α7 nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for α7 nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([11C](R)-MeQAA: 7.68 and [11C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [11C](R)-MeQAA was slow in the hippocampus (α7 nAChR-rich region) but was rapid in the cerebellum (α7 nAChR-poor region). On the other hand, the clearance was fast for [11C](S)-MeQAA in all regions. The brain uptake of [11C](R)-MeQAA was decreased by methyllycaconitine (α7 nAChR antagonist) treatment. In monkeys, α7 nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [11C](R)-MeQAA, while the uptake was rather homogeneous for [11C](S)-MeQAA. Conclusions: [11C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for α7 nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain α7 nAChRs in vivo.
UR - http://www.scopus.com/inward/record.url?scp=77950300485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950300485&partnerID=8YFLogxK
U2 - 10.1016/j.nucmedbio.2009.11.007
DO - 10.1016/j.nucmedbio.2009.11.007
M3 - Article
C2 - 20346874
AN - SCOPUS:77950300485
SN - 0969-8051
VL - 37
SP - 347
EP - 355
JO - Nuclear Medicine and Biology
JF - Nuclear Medicine and Biology
IS - 3
ER -