TY - JOUR
T1 - Synthesis and preclinical evaluation of [11C]MTP38 as a novel PET ligand for phosphodiesterase 7 in the brain
AU - Obokata, Naoyuki
AU - Seki, Chie
AU - Hirata, Takeshi
AU - Maeda, Jun
AU - Ishii, Hideki
AU - Nagai, Yuji
AU - Matsumura, Takehiko
AU - Takakuwa, Misae
AU - Fukuda, Hajime
AU - Minamimoto, Takafumi
AU - Kawamura, Kazunori
AU - Zhang, Ming Rong
AU - Nakajima, Tatsuo
AU - Saijo, Takeaki
AU - Higuchi, Makoto
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/9
Y1 - 2021/9
N2 - Purpose: Phosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [11C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7. Methods: [11C]MTP38 was radiosynthesized by 11C-cyanation of a bromo precursor with [11C]HCN. PET scans of rat and rhesus monkey brains and in vitro autoradiography of brain sections derived from these species were conducted with [11C]MTP38. In monkeys, dynamic PET data were analyzed with an arterial input function to calculate the total distribution volume (VT). The non-displaceable binding potential (BPND) in the striatum was also determined by a reference tissue model with cerebellar reference. Finally, striatal occupancy of PDE7 by an inhibitor was calculated in monkeys according to changes in BPND. Results: [11C]MTP38 was synthesized with radiochemical purity ≥99.4% and molar activity of 38.6 ± 12.6 GBq/μmol. Autoradiography revealed high radioactivity in the striatum and its reduction by non-radiolabeled ligands, in contrast with unaltered autoradiographic signals in other regions. In vivo PET after radioligand injection to rats and monkeys demonstrated that radioactivity was rapidly distributed to the brain and intensely accumulated in the striatum relative to the cerebellum. Correspondingly, estimated VT values in the monkey striatum and cerebellum were 3.59 and 2.69 mL/cm3, respectively. The cerebellar VT value was unchanged by pretreatment with unlabeled MTP38. Striatal BPND was reduced in a dose-dependent manner after pretreatment with MTP-X, a PDE7 inhibitor. Relationships between PDE7 occupancy by MTP-X and plasma MTP-X concentration could be described by Hill’s sigmoidal function. Conclusion: We have provided the first successful preclinical demonstration of in vivo PDE7 imaging with a specific PET radioligand. [11C]MTP38 is a feasible radioligand for evaluating PDE7 in the brain and is currently being applied to a first-in-human PET study.
AB - Purpose: Phosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [11C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7. Methods: [11C]MTP38 was radiosynthesized by 11C-cyanation of a bromo precursor with [11C]HCN. PET scans of rat and rhesus monkey brains and in vitro autoradiography of brain sections derived from these species were conducted with [11C]MTP38. In monkeys, dynamic PET data were analyzed with an arterial input function to calculate the total distribution volume (VT). The non-displaceable binding potential (BPND) in the striatum was also determined by a reference tissue model with cerebellar reference. Finally, striatal occupancy of PDE7 by an inhibitor was calculated in monkeys according to changes in BPND. Results: [11C]MTP38 was synthesized with radiochemical purity ≥99.4% and molar activity of 38.6 ± 12.6 GBq/μmol. Autoradiography revealed high radioactivity in the striatum and its reduction by non-radiolabeled ligands, in contrast with unaltered autoradiographic signals in other regions. In vivo PET after radioligand injection to rats and monkeys demonstrated that radioactivity was rapidly distributed to the brain and intensely accumulated in the striatum relative to the cerebellum. Correspondingly, estimated VT values in the monkey striatum and cerebellum were 3.59 and 2.69 mL/cm3, respectively. The cerebellar VT value was unchanged by pretreatment with unlabeled MTP38. Striatal BPND was reduced in a dose-dependent manner after pretreatment with MTP-X, a PDE7 inhibitor. Relationships between PDE7 occupancy by MTP-X and plasma MTP-X concentration could be described by Hill’s sigmoidal function. Conclusion: We have provided the first successful preclinical demonstration of in vivo PDE7 imaging with a specific PET radioligand. [11C]MTP38 is a feasible radioligand for evaluating PDE7 in the brain and is currently being applied to a first-in-human PET study.
UR - http://www.scopus.com/inward/record.url?scp=85102177448&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102177448&partnerID=8YFLogxK
U2 - 10.1007/s00259-021-05269-4
DO - 10.1007/s00259-021-05269-4
M3 - Article
C2 - 33674894
AN - SCOPUS:85102177448
SN - 1619-7070
VL - 48
SP - 3101
EP - 3112
JO - European Journal of Nuclear Medicine and Molecular Imaging
JF - European Journal of Nuclear Medicine and Molecular Imaging
IS - 10
ER -