Systematic analysis of exonic germline and postzygotic de novo mutations in bipolar disorder

Masaki Nishioka, An a. Kazuno, Takumi Nakamura, Naomi Sakai, Takashi Hayama, Kumiko Fujii, Koji Matsuo, Atsuko Komori, Mizuho Ishiwata, Yoshinori Watanabe, Takashi Oka, Nana Matoba, Muneko Kataoka, Ahmed N. Alkanaq, Kohei Hamanaka, Takashi Tsuboi, Toru Sengoku, Kazuhiro Ogata, Nakao Iwata, Masashi IkedaNaomichi Matsumoto, Tadafumi Kato, Atsushi Takata

Research output: Contribution to journalArticlepeer-review

Abstract

Bipolar disorder is a severe mental illness characterized by recurrent manic and depressive episodes. To better understand its genetic architecture, we analyze ultra-rare de novo mutations in 354 trios with bipolar disorder. For germline de novo mutations, we find significant enrichment of loss-of-function mutations in constrained genes (corrected-P = 0.0410) and deleterious mutations in presynaptic active zone genes (FDR = 0.0415). An analysis integrating single-cell RNA-sequencing data identifies a subset of excitatory neurons preferentially expressing the genes hit by deleterious mutations, which are also characterized by high expression of developmental disorder genes. In the analysis of postzygotic mutations, we observe significant enrichment of deleterious ones in developmental disorder genes (P = 0.00135), including the SRCAP gene mutated in two unrelated probands. These data collectively indicate the contributions of both germline and postzygotic mutations to the risk of bipolar disorder, supporting the hypothesis that postzygotic mutations of developmental disorder genes may contribute to bipolar disorder.

Original languageEnglish
Article number3750
JournalNature communications
Volume12
Issue number1
DOIs
Publication statusPublished - 12-2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Systematic analysis of exonic germline and postzygotic de novo mutations in bipolar disorder'. Together they form a unique fingerprint.

Cite this