Tachykinin-expressing neurons control male-specific aggressive arousal in drosophila

Kenta Asahina, Kiichi Watanabe, Brian J. Duistermars, Eric Hoopfer, Carlos Roberto González, Eyrún Arna Eyjólfsdóttir, Pietro Perona, David J. Anderson

Research output: Contribution to journalArticlepeer-review

221 Citations (Scopus)

Abstract

Males of most species are more aggressive than females, but the neural mechanisms underlying this dimorphism are not clear. Here, we identify a neuron and a gene that control the higher level of aggression characteristic of Drosophila melanogaster males. Males, but not females, contain a small cluster of FruM+ neurons that express the neuropeptide tachykinin (Tk). Activation and silencing of these neurons increased and decreased, respectively, intermale aggression without affecting male-female courtship behavior. Mutations in both Tk and a candidate receptor, Takr86C, suppressed the effect of neuronal activation, whereas overexpression of Tk potentiated it. Tk neuron activation overcame reduced aggressiveness caused by eliminating a variety of sensory or contextual cues, suggesting that it promotes aggressive arousal or motivation. Tachykinin/Substance P has been implicated in aggression in mammals, including humans. Thus, the higher aggressiveness of Drosophila males reflects the sexually dimorphic expression of a neuropeptide that controls agonistic behaviors across phylogeny.

Original languageEnglish
Pages (from-to)221-235
Number of pages15
JournalCell
Volume156
Issue number1-2
DOIs
Publication statusPublished - 16-01-2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Tachykinin-expressing neurons control male-specific aggressive arousal in drosophila'. Together they form a unique fingerprint.

Cite this