Targeting ceramide synthase 6-dependent metastasisprone phenotype in lung cancer cells

Motoshi Suzuki, Ke Cao, Seiichi Kato, Yuji Komizu, Naoki Mizutani, Kouji Tanaka, Chinatsu Arima, Mei Chee Tai, Kiyoshi Yanagisawa, Norie Togawa, Takahiro Shiraishi, Noriyasu Usami, Tetsuo Taniguchi, Takayuki Fukui, Kohei Yokoi, Keiko Wakahara, Yoshinori Hasegawa, Yukiko Mizutani, Yasuyuki Igarashi, Jin Ichi InokuchiSoichiro Iwaki, Satoshi Fujii, Akira Satou, Yoko Matsumoto, Ryuichi Ueoka, Keiko Tamiya-Koizumi, Takashi Murate, Mitsuhiro Nakamura, Mamoru Kyogashima, Takashi Takahashi

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

Sphingolipids make up a family of molecules associated with an array of biological functions, including cell death and migration. Sphingolipids are often altered in cancer, though how these alterations lead to tumor formation and progression is largely unknown. Here, we analyzed non-small-cell lung cancer (NSCLC) specimens and cell lines and determined that ceramide synthase 6 (CERS6) is markedly overexpressed compared with controls. Elevated CERS6 expression was due in part to reduction of microRNA-101 (miR-101) and was associated with increased invasion and poor prognosis. CERS6 knockdown in NSCLC cells altered the ceramide profile, resulting in decreased cell migration and invasion in vitro, and decreased the frequency of RAC1-positive lamellipodia formation while CERS6 overexpression promoted it. In murine models, CERS6 knockdown in transplanted NSCLC cells attenuated lung metastasis. Furthermore, combined treatment with l-α-dimyristoylphosphatidylcholine liposome and the glucosylceramide synthase inhibitor D-PDMP induced cell death in association with ceramide accumulation and promoted cancer cell apoptosis and tumor regression in murine models. Together, these results indicate that CERS6-dependent ceramide synthesis and maintenance of ceramide in the cellular membrane are essential for lamellipodia formation and metastasis. Moreover, these results suggest that targeting this homeostasis has potential as a therapeutic strategy for CERS6-overexpressing NSCLC.

Original languageEnglish
Pages (from-to)254-265
Number of pages12
JournalJournal of Clinical Investigation
Volume126
Issue number1
DOIs
Publication statusPublished - 04-01-2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Medicine

Fingerprint

Dive into the research topics of 'Targeting ceramide synthase 6-dependent metastasisprone phenotype in lung cancer cells'. Together they form a unique fingerprint.

Cite this