The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy

Research output: Contribution to journalReview articlepeer-review

Abstract

Skeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.

Original languageEnglish
Article number2291
JournalCells
Volume11
Issue number15
DOIs
Publication statusPublished - 08-2022

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy'. Together they form a unique fingerprint.

Cite this