TY - JOUR
T1 - The novel function of advanced glycation end products in regulation of MMP-9 production
AU - Zhang, Fan
AU - Banker, Greg
AU - Liu, Xiaodong
AU - Suwanabol, Pasithorn A.
AU - Lengfeld, Justin
AU - Yamanouchi, Dai
AU - Kent, K. Craig
AU - Liu, Bo
PY - 2011/12
Y1 - 2011/12
N2 - Background: Advanced glycation end products (AGEs), formed from proteins and peptides by nonenzymatic glycoxidation after contact with aldose sugars, have been implicated in the pathogenesis of age-related cardiac and vascular dysfunction. Our previous study demonstrated significantly elevated levels of AGE and the receptor for AGE (RAGE) in human abdominal aortic aneurysm (AAA) tissues. Inhibition of AGE signaling by targeted gene deletion of RAGE markedly reduced the development of aneurysm in a mouse model of AAA. We also showed that AGE may stimulate aneurysm formation by promoting metalloproteinase (MMP)-9 expression. In this study, we investigated the molecular mechanism underlying this novel function of AGE. Methods: The murine macrophage cell line RAW 264.7 was pretreated with AGE, TGF-β, and MAPK inhibitors. The protein was collected for Western blot analysis. Culture supernatants were collected to determine MMP-9 activity by gelatin zymography. Results: We found that AGE induced the production of MMP-9 in macrophages in a dose-dependent manner. This induction of MMP-9 was markedly diminished by pretreatment with TGF-β. To delineate the underlying molecular mechanism, we showed that AGE increased phosphorylation of p44/42 ERK, p38, JNK, and PI3K in macrophages. Moreover, AGE induced active p65 subunit of NF- κB. Inhibition of ERK (UO126) or p38 (SB203580), but not PI3K (LY294002 or wortmannin), blocked AGE-induced MMP-9 expression. In contrast, inhibition of JNK (SP-600125) significantly enhanced the stimulatory effect of AGE on MMP-9. Furthermore, TGF-β suppressed AGE-induced expression of the active p65 subunit of NF-κB. Conclusions: Our data indicate that AGE induces MMP-9 through activation of ERK, p38 mitogen-activated protein and NF-κB, a pathway that is antagonized by TGF-β. This finding in conjunction with previously reported AGE functions in inflammation suggests that anti-AGE therapies could be effective in the prevention of human AAA development and progression.
AB - Background: Advanced glycation end products (AGEs), formed from proteins and peptides by nonenzymatic glycoxidation after contact with aldose sugars, have been implicated in the pathogenesis of age-related cardiac and vascular dysfunction. Our previous study demonstrated significantly elevated levels of AGE and the receptor for AGE (RAGE) in human abdominal aortic aneurysm (AAA) tissues. Inhibition of AGE signaling by targeted gene deletion of RAGE markedly reduced the development of aneurysm in a mouse model of AAA. We also showed that AGE may stimulate aneurysm formation by promoting metalloproteinase (MMP)-9 expression. In this study, we investigated the molecular mechanism underlying this novel function of AGE. Methods: The murine macrophage cell line RAW 264.7 was pretreated with AGE, TGF-β, and MAPK inhibitors. The protein was collected for Western blot analysis. Culture supernatants were collected to determine MMP-9 activity by gelatin zymography. Results: We found that AGE induced the production of MMP-9 in macrophages in a dose-dependent manner. This induction of MMP-9 was markedly diminished by pretreatment with TGF-β. To delineate the underlying molecular mechanism, we showed that AGE increased phosphorylation of p44/42 ERK, p38, JNK, and PI3K in macrophages. Moreover, AGE induced active p65 subunit of NF- κB. Inhibition of ERK (UO126) or p38 (SB203580), but not PI3K (LY294002 or wortmannin), blocked AGE-induced MMP-9 expression. In contrast, inhibition of JNK (SP-600125) significantly enhanced the stimulatory effect of AGE on MMP-9. Furthermore, TGF-β suppressed AGE-induced expression of the active p65 subunit of NF-κB. Conclusions: Our data indicate that AGE induces MMP-9 through activation of ERK, p38 mitogen-activated protein and NF-κB, a pathway that is antagonized by TGF-β. This finding in conjunction with previously reported AGE functions in inflammation suggests that anti-AGE therapies could be effective in the prevention of human AAA development and progression.
UR - http://www.scopus.com/inward/record.url?scp=81155139257&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81155139257&partnerID=8YFLogxK
U2 - 10.1016/j.jss.2010.04.027
DO - 10.1016/j.jss.2010.04.027
M3 - Article
C2 - 20638679
AN - SCOPUS:81155139257
SN - 0022-4804
VL - 171
SP - 871
EP - 876
JO - Journal of Surgical Research
JF - Journal of Surgical Research
IS - 2
ER -