TY - JOUR
T1 - The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice
AU - Yamada, Kiyofumi
AU - Noda, Yukihiro
AU - Hasegawa, Takaaki
AU - Komori, Yumiko
AU - Nikai, Toshiaki
AU - Sugihara, Hisayoshi
AU - Nabeshima, Toshitaka
PY - 1996/2
Y1 - 1996/2
N2 - We investigated the role played by nitric oxide in the dizocilpine-induced impairment of both spontaneous alternation behavior in a Y-maze and of performance in a multiple-trial passive avoidance task in mice. Dizocilpine (0.1 mg/kg) impaired the spontaneous alternation behavior and the retention of passive avoidance without affecting acquisition in the multiple-trial passive avoidance task. NG-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide (NO) synthase, dose-dependently impaired the spontaneous alternation behavior, but had no effect on either the acquisition or retention of passive avoidance. NG-nitro-D-arginine methylester had no effect on either task. The inhibitory effect of L-NAME on the spontaneous alternation behavior was completely reversed by the coadministration of L-arginine. Pretreatment with L-arginine ameliorated the dizocilpine-induced impairment of spontaneous alternation behavior, but not the impairment of the retention of passive avoidance. S-Nitroso-N-acetylpenicillamine, a generator of NO, completely inhibited the dizocilpine-induced impairment of spontaneous alternation behavior. Finally, the impairment of spontaneous alternation behavior caused by dizocilpine was significantly diminished by pretreatment with dibutyryl cyclic GMP. These results suggest that, although N-methyl-o-aspartate receptors play a critical role in both spatial working memory and long-term memory processes assessed by spontaneous alternation behavior and the passive avoidance, respectively, different neuronal mechanisms may be involved in these two processes. Further, it is suggested that the NO/cyclic GMP system may play a role in spatial working memory.
AB - We investigated the role played by nitric oxide in the dizocilpine-induced impairment of both spontaneous alternation behavior in a Y-maze and of performance in a multiple-trial passive avoidance task in mice. Dizocilpine (0.1 mg/kg) impaired the spontaneous alternation behavior and the retention of passive avoidance without affecting acquisition in the multiple-trial passive avoidance task. NG-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide (NO) synthase, dose-dependently impaired the spontaneous alternation behavior, but had no effect on either the acquisition or retention of passive avoidance. NG-nitro-D-arginine methylester had no effect on either task. The inhibitory effect of L-NAME on the spontaneous alternation behavior was completely reversed by the coadministration of L-arginine. Pretreatment with L-arginine ameliorated the dizocilpine-induced impairment of spontaneous alternation behavior, but not the impairment of the retention of passive avoidance. S-Nitroso-N-acetylpenicillamine, a generator of NO, completely inhibited the dizocilpine-induced impairment of spontaneous alternation behavior. Finally, the impairment of spontaneous alternation behavior caused by dizocilpine was significantly diminished by pretreatment with dibutyryl cyclic GMP. These results suggest that, although N-methyl-o-aspartate receptors play a critical role in both spatial working memory and long-term memory processes assessed by spontaneous alternation behavior and the passive avoidance, respectively, different neuronal mechanisms may be involved in these two processes. Further, it is suggested that the NO/cyclic GMP system may play a role in spatial working memory.
UR - http://www.scopus.com/inward/record.url?scp=0030088028&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030088028&partnerID=8YFLogxK
M3 - Article
C2 - 8632310
AN - SCOPUS:0030088028
SN - 0022-3565
VL - 276
SP - 460
EP - 466
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 2
ER -