Three immunoproteasome-associated subunits cooperatively generate a cytotoxic T-lymphocyte epitope of Epstein-Barr virus LMP2A by overcoming specific structures resistant to epitope liberation

Yoshinori Ito, Eisei Kondo, Ayako Demachi-Okamura, Yoshiki Akatsuka, Kunio Tsujimura, Mitsune Tanimoto, Yasuo Morishima, Toshitada Takahashi, Kiyotaka Kuzushima

Research output: Contribution to journalArticle

11 Citations (Scopus)


The precise roles of gamma interferon-inducible immunoproteasome-associated molecules in generation of cytotoxic T-lymphocyte (CTL) epitopes have yet to be fully elucidated. We describe here a unique epitope derived from the Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) presented by HLA-A*2402 molecules. Generation of the epitope, designated LMP2A 222-230, from the full-length protein requires the immunoproteasome subunit low-molecular-weight protein 7 (ip-LMP7) and the proteasome activator 28-α subunit and is accelerated by ip-LMP2, as revealed by gene expression experiments using an LMP2A222-230-specific CTL clone as a responder in enzyme-linked immunospot assays. The unequivocal involvement of all three components was confirmed by RNA interference gene silencing. Interestingly, the LMP2A222-230 epitope could be efficiently generated from incomplete EBV-LMP2A fragments that were produced by puromycin treatment or gene-engineered shortened EBV-LMP2A lacking some of its hydrophobic domains. In addition, epitope generation was increased by a single amino acid substitution from leucine to alanine immediately flanking the C terminus, this being predicted by a web-accessible program to increase the cleavage strength. Taken together, the data indicate that the generation of LMP2A222-230 is influenced not only by extrinsic factors such as immunoproteasomes but also by intrinsic factors such as the length of the EBV-LMP2A protein and proteasomal cleavage strength at specific positions in the source antigen.

Original languageEnglish
Pages (from-to)883-890
Number of pages8
JournalJournal of Virology
Issue number2
Publication statusPublished - 01-01-2006


All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this