TY - JOUR
T1 - Transdermal system based on solid cilostazol nanoparticles attenuates ischemia/reperfusion-induced brain injury in mice
AU - Otake, Hiroko
AU - Yamaguchi, Mizuki
AU - Ogata, Fumihiko
AU - Deguchi, Saori
AU - Yamamoto, Naoki
AU - Sasaki, Hiroshi
AU - Kawasaki, Naohito
AU - Nagai, Noriaki
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4
Y1 - 2021/4
N2 - Cilostazol (CIL) exerted a protective effect by promoting blood–brain barrier integrity as well as improving the status of neurological dysfunctions following cerebral ischemia/reperfusion (I/R) injury. We attempted to design a 0.5% CIL carbopol gel using solid nanoparticles (CIL-Ngel), and then investigated the relationships between energy-dependent endocytosis and the skin penetration of CIL-Ngel in this study. In addition, we evaluated whether the CIL-Ngel attenuated I/R-induced brain injury in a middle cerebral artery occlusion (MCAO)/reperfusion model mouse. The particle size of CIL was decreased using a bead mill, and the CIL particles (14.9 × 1014 particles/0.3 g) in the CIL-Ngel were approximately 50–180 nm. The release of CIL in the CIL-Ngel was higher than that in gel containing CIL powder (CIL-Mgel), and the CIL particles were released from the CIL-Ngel as nanoparticles. In addition, the percutaneous absorption of CIL from the CIL-Ngel was higher in comparison with that from CIL-Mgel, and clathrin-dependent endocytosis and caveolae-dependent endocytosis were related to the enhanced skin penetration of CIL-NPs. In the traditional (oral administration of CIL powder, 3 mg/kg) and transdermal administration (CIL-Ngel, 0.3 g) for 3 days (once a day), the area under the plasma CIL concentration–time curves (AUC) was similar, although the CIL supplied to the blood by the CIL-Ngel was more sustained than that via oral administration of CIL powder. Furthermore, the CIL-Ngel attenuated the ischemic stroke. In conclusion, we designed a gel using solid CIL-NPs, and we showed that the sustained release of CIL by CIL-Ngel provided an effective treatment for ischemic stroke in MCAO/reperfusion model mice. These findings induce the possibilities of developing novel applications of CIL solid nanoparticles.
AB - Cilostazol (CIL) exerted a protective effect by promoting blood–brain barrier integrity as well as improving the status of neurological dysfunctions following cerebral ischemia/reperfusion (I/R) injury. We attempted to design a 0.5% CIL carbopol gel using solid nanoparticles (CIL-Ngel), and then investigated the relationships between energy-dependent endocytosis and the skin penetration of CIL-Ngel in this study. In addition, we evaluated whether the CIL-Ngel attenuated I/R-induced brain injury in a middle cerebral artery occlusion (MCAO)/reperfusion model mouse. The particle size of CIL was decreased using a bead mill, and the CIL particles (14.9 × 1014 particles/0.3 g) in the CIL-Ngel were approximately 50–180 nm. The release of CIL in the CIL-Ngel was higher than that in gel containing CIL powder (CIL-Mgel), and the CIL particles were released from the CIL-Ngel as nanoparticles. In addition, the percutaneous absorption of CIL from the CIL-Ngel was higher in comparison with that from CIL-Mgel, and clathrin-dependent endocytosis and caveolae-dependent endocytosis were related to the enhanced skin penetration of CIL-NPs. In the traditional (oral administration of CIL powder, 3 mg/kg) and transdermal administration (CIL-Ngel, 0.3 g) for 3 days (once a day), the area under the plasma CIL concentration–time curves (AUC) was similar, although the CIL supplied to the blood by the CIL-Ngel was more sustained than that via oral administration of CIL powder. Furthermore, the CIL-Ngel attenuated the ischemic stroke. In conclusion, we designed a gel using solid CIL-NPs, and we showed that the sustained release of CIL by CIL-Ngel provided an effective treatment for ischemic stroke in MCAO/reperfusion model mice. These findings induce the possibilities of developing novel applications of CIL solid nanoparticles.
UR - http://www.scopus.com/inward/record.url?scp=85104144222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104144222&partnerID=8YFLogxK
U2 - 10.3390/nano11041009
DO - 10.3390/nano11041009
M3 - Article
AN - SCOPUS:85104144222
SN - 2079-4991
VL - 11
JO - Nanomaterials
JF - Nanomaterials
IS - 4
M1 - 1009
ER -