Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting

Junko Masuda, Hiroshi Kawamoto, Warren Strober, Eiji Takayama, Akifumi Mizutani, Hiroshi Murakami, Tomokatsu Ikawa, Atsushi Kitani, Narumi Maeno, Tsukasa Shigehiro, Ayano Satoh, Akimasa Seno, Vaidyanath Arun, Tomonari Kasai, Ivan J. Fuss, Yoshimoto Katsura, Masaharu Seno

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.

Original languageEnglish
Pages (from-to)1559-1573
Number of pages15
JournalApplied Biochemistry and Biotechnology
Volume180
Issue number8
DOIs
Publication statusPublished - 01-12-2016

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biochemistry
  • Applied Microbiology and Biotechnology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting'. Together they form a unique fingerprint.

Cite this