TRIM26 positively affects hepatitis B virus replication by inhibiting proteasome-dependent degradation of viral core protein

Yuki Nakaya, Tsutomu Nishizawa, Hironori Nishitsuji, Hiromi Morita, Tomoko Yamagata, Daichi Onomura, Kazumoto Murata

Research output: Contribution to journalArticlepeer-review

Abstract

Chronic hepatitis B virus (HBV) infection is a major medical concern worldwide. Current treatments for HBV infection effectively inhibit virus replication; however, these treatments cannot cure HBV and novel treatment-strategies should be necessary. In this study, we identified tripartite motif-containing protein 26 (TRIM26) could be a supportive factor for HBV replication. Small interfering RNA-mediated TRIM26 knockdown (KD) modestly attenuated HBV replication in human hepatocytes. Endogenous TRIM26 physically interacted with HBV core protein (HBc), but not polymerase and HBx, through the TRIM26 SPRY domain. Unexpectedly, TRIM26 inhibited HBc ubiquitination even though TRIM26 is an E3 ligase. HBc was degraded by TRIM26 KD in Huh-7 cells, whereas the reduction was restored by a proteasome inhibitor. RING domain-deleted TRIM26 mutant (TRIM26ΔR), a dominant negative form of TRIM26, sequestered TRIM26 from HBc, resulting in promoting HBc degradation. Taking together, this study demonstrated that HBV utilizes TRIM26 to avoid the proteasome-dependent HBc degradation. The interaction between TRIM26 and HBc might be a novel therapeutic target against HBV infection.

Original languageEnglish
Article number13584
JournalScientific reports
Volume13
Issue number1
DOIs
Publication statusPublished - 12-2023

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'TRIM26 positively affects hepatitis B virus replication by inhibiting proteasome-dependent degradation of viral core protein'. Together they form a unique fingerprint.

Cite this