TY - JOUR
T1 - Tumor Necrosis Factor-α Promotes Cholestasis-Induced Liver Fibrosis in the Mouse through Tissue Inhibitor of Metalloproteinase-1 Production in Hepatic Stellate Cells
AU - Osawa, Yosuke
AU - Hoshi, Masato
AU - Yasuda, Ichiro
AU - Saibara, Toshiji
AU - Moriwaki, Hisataka
AU - Kozawa, Osamu
PY - 2013/6/3
Y1 - 2013/6/3
N2 - Tumor necrosis factor (TNF)-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC) activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α-/- mice and TNF-α+/+ mice after bile duct ligation (BDL). Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL). TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I) mRNA, transforming growth factor (TGF)-β mRNA, and α-smooth muscle actin (αSMA) protein by CBDL+CDL in the livers of TNF-α-/- mice were comparable to those in TNF-α+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I) mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP)-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α-/- mice than in TNF-α+/+ mice. Fibrosis in the lobe of TIMP-1-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.
AB - Tumor necrosis factor (TNF)-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC) activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α-/- mice and TNF-α+/+ mice after bile duct ligation (BDL). Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL). TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I) mRNA, transforming growth factor (TGF)-β mRNA, and α-smooth muscle actin (αSMA) protein by CBDL+CDL in the livers of TNF-α-/- mice were comparable to those in TNF-α+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I) mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP)-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α-/- mice than in TNF-α+/+ mice. Fibrosis in the lobe of TIMP-1-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.
UR - http://www.scopus.com/inward/record.url?scp=84878641742&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878641742&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0065251
DO - 10.1371/journal.pone.0065251
M3 - Article
C2 - 23755201
AN - SCOPUS:84878641742
SN - 1932-6203
VL - 8
JO - PloS one
JF - PloS one
IS - 6
M1 - e65251
ER -