Two-versus three-dimensional regions of interest for quantifying SPECT-CT images

Masakazu Tsujimoto, Seiji Shirakawa, Masanori Watanabe, Atsushi Teramoto, Masaki Uno, Seiichiro Ota, Ryo Matsukiyo, Taro Okui, Yoshikazu Kobayashi, Hiroshi Toyama

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


The aim of this study was to investigate the relationship of quantitative parameters between the two-dimensional region of interest (ROI) and the three-dimensional volume of interest (VOI) for accumulation of radiopharmaceutical. Single-photon emission computed tomography combined with computed tomography (SPECT/CT) images of the NEMA/IEC phantom were acquired. The ROIs and VOIs were automatically set to the sphere and background in the phantom. We defined as two-dimensional analysis (2D analysis) that which used ROIs set on the center section of the sphere, and as three-dimensional analysis (3D analysis) that which used VOIs set on the center of gravity of the sphere. Dose linearity (DL), the recovery coefficient (RC), the contrast-to-noise ratio (CNR), and standardized uptake value (SUV) were evaluated. Each index value was compared between both analyses. DL was almost 1 under both conditions. RC showed a similar tendency with 2D and 3D analyses. The CNR for 3D analysis was smaller than for 2D analysis. The maximum SUV was almost equal with both analyses. The mean SUV with 3D analysis was underestimated by 4.83% on average compared with 2D analysis. For the same accumulation, a difference may occur in the quantitative index between 2 and 3D analyses. In particular, the quantitative parameters based on the average value tends to be smaller with 3D analysis than 2D analysis. The quantitative parameters in 2D analysis showed dependence upon the cross section used for setting the ROI, whereas 3D analysis showed less dependence on the position of the VOI.

Original languageEnglish
Pages (from-to)365-375
Number of pages11
JournalPhysical and Engineering Sciences in Medicine
Issue number2
Publication statusPublished - 06-2021

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Radiological and Ultrasound Technology
  • Biophysics
  • Biomedical Engineering
  • Instrumentation
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Two-versus three-dimensional regions of interest for quantifying SPECT-CT images'. Together they form a unique fingerprint.

Cite this