TY - JOUR
T1 - URH49 exports mRNA by remodeling complex formation and mediating the NXF1-dependent pathway
AU - Fujita, Ken ichi
AU - Yamazaki, Tomohiro
AU - Harada, Kotaro
AU - Seno, Shigeto
AU - Matsuda, Hideo
AU - Masuda, Seiji
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/2
Y1 - 2020/2
N2 - The TREX complex integrates information from nuclear mRNA processing events to ensure the timely export of mRNA to the cytoplasm. In humans, UAP56 and its paralog URH49 form distinct complexes, the TREX complex and the AREX complex, respectively, which cooperatively regulate the expression of a specific set of mRNA species on a genome wide scale. The difference in the complex formation between UAP56 and URH49 are thought to play a critical role in the regulation of target mRNAs. To date, the underlying mechanism remains poorly understood. Here we characterize the formation of the TREX complex and the AREX complex. In the ATP depleted condition, UAP56 formed an Apo-TREX complex containing the THO subcomplex but not ALYREF and CIP29. URH49 formed an Apo-AREX complex containing CIP29 but not ALYREF and the THO subcomplex. However, with the addition of ATP, both the Apo-TREX complex and the Apo-AREX complex were remodeled to highly similar ATP-TREX complex containing the THO subcomplex, ALYREF and CIP29. The knockdown of URH49 caused a reduction in its target mRNAs and a cytokinesis failure. Similarly, cytokinesis abnormality was observed in CIP29 knockdown cells, suggesting that CIP29 belongs to the URH49 regulated mRNA export pathway. Lastly, we confirmed that the export of mRNA in URH49-dependent pathway is achieved by NXF1, which is also observed in UAP56-dependent pathway. Our studies propose an mRNA export model that the mRNA selectivity depends on the Apo-form TREX/AREX complex, which is remodeled to the highly similar ATP-form complex upon ATP loading, and integrated to NXF1.
AB - The TREX complex integrates information from nuclear mRNA processing events to ensure the timely export of mRNA to the cytoplasm. In humans, UAP56 and its paralog URH49 form distinct complexes, the TREX complex and the AREX complex, respectively, which cooperatively regulate the expression of a specific set of mRNA species on a genome wide scale. The difference in the complex formation between UAP56 and URH49 are thought to play a critical role in the regulation of target mRNAs. To date, the underlying mechanism remains poorly understood. Here we characterize the formation of the TREX complex and the AREX complex. In the ATP depleted condition, UAP56 formed an Apo-TREX complex containing the THO subcomplex but not ALYREF and CIP29. URH49 formed an Apo-AREX complex containing CIP29 but not ALYREF and the THO subcomplex. However, with the addition of ATP, both the Apo-TREX complex and the Apo-AREX complex were remodeled to highly similar ATP-TREX complex containing the THO subcomplex, ALYREF and CIP29. The knockdown of URH49 caused a reduction in its target mRNAs and a cytokinesis failure. Similarly, cytokinesis abnormality was observed in CIP29 knockdown cells, suggesting that CIP29 belongs to the URH49 regulated mRNA export pathway. Lastly, we confirmed that the export of mRNA in URH49-dependent pathway is achieved by NXF1, which is also observed in UAP56-dependent pathway. Our studies propose an mRNA export model that the mRNA selectivity depends on the Apo-form TREX/AREX complex, which is remodeled to the highly similar ATP-form complex upon ATP loading, and integrated to NXF1.
KW - ATP
KW - Complex remodeling
KW - UAP56
KW - URH49
KW - mRNA export
UR - http://www.scopus.com/inward/record.url?scp=85077919111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077919111&partnerID=8YFLogxK
U2 - 10.1016/j.bbagrm.2020.194480
DO - 10.1016/j.bbagrm.2020.194480
M3 - Article
C2 - 31917363
AN - SCOPUS:85077919111
SN - 1874-9399
VL - 1863
JO - Biochimica et Biophysica Acta - Gene Regulatory Mechanisms
JF - Biochimica et Biophysica Acta - Gene Regulatory Mechanisms
IS - 2
M1 - 194480
ER -