TY - JOUR
T1 - Validation of deep learning-based CT image reconstruction for treatment planning
AU - Yasui, Keisuke
AU - Saito, Yasunori
AU - Ito, Azumi
AU - Douwaki, Momoka
AU - Ogawa, Shuta
AU - Kasugai, Yuri
AU - Ooe, Hiromu
AU - Nagake, Yuya
AU - Hayashi, Naoki
N1 - Publisher Copyright:
© 2023, Springer Nature Limited.
PY - 2023/12
Y1 - 2023/12
N2 - Deep learning-based CT image reconstruction (DLR) is a state-of-the-art method for obtaining CT images. This study aimed to evaluate the usefulness of DLR in radiotherapy. Data were acquired using a large-bore CT system and an electron density phantom for radiotherapy. We compared the CT values, image noise, and CT value-to-electron density conversion table of DLR and hybrid iterative reconstruction (H-IR) for various doses. Further, we evaluated three DLR reconstruction strength patterns (Mild, Standard, and Strong). The variations of CT values of DLR and H-IR were large at low doses, and the difference in average CT values was insignificant with less than 10 HU at doses of 100 mAs and above. DLR showed less change in CT values and smaller image noise relative to H-IR. The noise-reduction effect was particularly large in the low-dose region. The difference in image noise between DLR Mild and Standard/Strong was large, suggesting the usefulness of reconstruction intensities higher than Mild. DLR showed stable CT values and low image noise for various materials, even at low doses; particularly for Standard or Strong, the reduction in image noise was significant. These findings indicate the usefulness of DLR in treatment planning using large-bore CT systems.
AB - Deep learning-based CT image reconstruction (DLR) is a state-of-the-art method for obtaining CT images. This study aimed to evaluate the usefulness of DLR in radiotherapy. Data were acquired using a large-bore CT system and an electron density phantom for radiotherapy. We compared the CT values, image noise, and CT value-to-electron density conversion table of DLR and hybrid iterative reconstruction (H-IR) for various doses. Further, we evaluated three DLR reconstruction strength patterns (Mild, Standard, and Strong). The variations of CT values of DLR and H-IR were large at low doses, and the difference in average CT values was insignificant with less than 10 HU at doses of 100 mAs and above. DLR showed less change in CT values and smaller image noise relative to H-IR. The noise-reduction effect was particularly large in the low-dose region. The difference in image noise between DLR Mild and Standard/Strong was large, suggesting the usefulness of reconstruction intensities higher than Mild. DLR showed stable CT values and low image noise for various materials, even at low doses; particularly for Standard or Strong, the reduction in image noise was significant. These findings indicate the usefulness of DLR in treatment planning using large-bore CT systems.
UR - http://www.scopus.com/inward/record.url?scp=85171348482&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85171348482&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-42775-x
DO - 10.1038/s41598-023-42775-x
M3 - Article
C2 - 37723226
AN - SCOPUS:85171348482
SN - 2045-2322
VL - 13
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 15413
ER -