TY - JOUR
T1 - Wastewater as a probable environmental reservoir of extended-spectrum-β-lactamase genes
T2 - Detection of chimeric β-lactamases ctx-m-64 and ctx-m-123
AU - Tanaka, Hayato
AU - Hayashi, Wataru
AU - Iimura, Masaki
AU - Taniguchi, Yui
AU - Soga, Eiji
AU - Matsuo, Nao
AU - Kawamura, Kumiko
AU - Arakawa, Yoshichika
AU - Nagano, Yukiko
AU - Naganoa, Noriyuki
N1 - Publisher Copyright:
© 2019 American Society for Microbiology. All Rights Reserved.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - The presence of antimicrobial-resistant bacteria and resistance genes in aquatic environments is a serious public health concern. This study focused on Escherichia coli possessing blaCTX-M genes in wastewater inflows. Twelve crude inflow water samples from wastewater treatment plant (WWTP) A and two samples each from three other WWTPs were collected in 2017 and 2018. A total of 73 E. coli isolates with 31 different sequence types (STs) harboring distinctive blaCTX-M gene repertoires were detected. In WWTP A influents, blaCTX-M-14 (14 isolates) was domi-nant, followed by blaCTX-M-15 (12 isolates) and blaCTX-M-27 (10 isolates). The chimeric blaCTX-M-64 and blaCTX-M-123 genes were each identified in one of the E. coli isolates from the same WWTP A inflow port. The blaCTX-M-27 gene was associated with five of seven B2-ST131 isolates, including three isolates of the B2-O25b-ST131-H30R/non-Rx lineage. One of the remaining two isolates belonged to the B2-O25b-ST131-H30R/Rx lineage harboring the blaCTX-M-15 gene. As for the B2-grated into the chromosome of ST10 E. coli B22 via ISEcpi-mediated transposition of a 9,467-bp sequence. The blaCTX-M-123-carrying IncI1 plasmid pB64 was 109,169 bp in length with pST108. The overall findings suggest that wastewater may act as a probable reservoir of clinically significant clonal lineages mediating antimicrobial resistance genes and chimeric genes that have not yet been identified from human isolates of domestic origin in Japan. IMPORTANCE Global spread of CTX-M-type extended-spectrum β-lactamase (ESBL)- producing Enterobacteriaceae is a critical concern in both clinical and community settings. This dominance of CTX-M-type ESBL producers may be largely due to the successful international spread of epidemic clones, as represented by the extraintestinal pathogenic Escherichia coli (ExPEC) ST131. Our findings highlight the worrisome presence of diverse E. coli clones associated with humans, including ExPEC lineages harboring the most common blaCTX-M variants in untreated wastewater samples. Moreover, the chimeric genes blaCTX-M-64 and blaCTX-M-123, which have not yet been identified from human isolates of domestic origin in Japan, were identified. Exposure to untreated wastewater through combined sewer overflow caused by heavy rains derived from abnormal weather change could pose a risk for human health due to ingesting those antimicrobial-resistant bacteria.
AB - The presence of antimicrobial-resistant bacteria and resistance genes in aquatic environments is a serious public health concern. This study focused on Escherichia coli possessing blaCTX-M genes in wastewater inflows. Twelve crude inflow water samples from wastewater treatment plant (WWTP) A and two samples each from three other WWTPs were collected in 2017 and 2018. A total of 73 E. coli isolates with 31 different sequence types (STs) harboring distinctive blaCTX-M gene repertoires were detected. In WWTP A influents, blaCTX-M-14 (14 isolates) was domi-nant, followed by blaCTX-M-15 (12 isolates) and blaCTX-M-27 (10 isolates). The chimeric blaCTX-M-64 and blaCTX-M-123 genes were each identified in one of the E. coli isolates from the same WWTP A inflow port. The blaCTX-M-27 gene was associated with five of seven B2-ST131 isolates, including three isolates of the B2-O25b-ST131-H30R/non-Rx lineage. One of the remaining two isolates belonged to the B2-O25b-ST131-H30R/Rx lineage harboring the blaCTX-M-15 gene. As for the B2-grated into the chromosome of ST10 E. coli B22 via ISEcpi-mediated transposition of a 9,467-bp sequence. The blaCTX-M-123-carrying IncI1 plasmid pB64 was 109,169 bp in length with pST108. The overall findings suggest that wastewater may act as a probable reservoir of clinically significant clonal lineages mediating antimicrobial resistance genes and chimeric genes that have not yet been identified from human isolates of domestic origin in Japan. IMPORTANCE Global spread of CTX-M-type extended-spectrum β-lactamase (ESBL)- producing Enterobacteriaceae is a critical concern in both clinical and community settings. This dominance of CTX-M-type ESBL producers may be largely due to the successful international spread of epidemic clones, as represented by the extraintestinal pathogenic Escherichia coli (ExPEC) ST131. Our findings highlight the worrisome presence of diverse E. coli clones associated with humans, including ExPEC lineages harboring the most common blaCTX-M variants in untreated wastewater samples. Moreover, the chimeric genes blaCTX-M-64 and blaCTX-M-123, which have not yet been identified from human isolates of domestic origin in Japan, were identified. Exposure to untreated wastewater through combined sewer overflow caused by heavy rains derived from abnormal weather change could pose a risk for human health due to ingesting those antimicrobial-resistant bacteria.
KW - Ctx-M-123
KW - Ctx-M-64
KW - Esbl
KW - Wastewater
KW - Wwtps
UR - http://www.scopus.com/inward/record.url?scp=85074307401&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074307401&partnerID=8YFLogxK
U2 - 10.1128/AEM.01740-19
DO - 10.1128/AEM.01740-19
M3 - Article
C2 - 31519655
AN - SCOPUS:85074307401
SN - 0099-2240
VL - 85
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 22
M1 - 01740
ER -