Z-360, a novel therapeutic agent for pancreatic cancer, prevents up-regulation of ephrin B1 gene expression and phosphorylation of NR2B via suppression of interleukin-1 β production in a cancer-induced pain model in mice

Yuki Orikawa, Hiroki Kato, Koichi Seto, Nobuyoshi Kobayashi, Koji Yoshinaga, Hiroki Hamano, Yuko Hori, Tim Meyer, Mineo Takei

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Background: Z-360 is an orally active cholecystokinin-2 (CCK2)/gastrin receptor antagonist currently under development as a therapeutic drug for pancreatic cancer. It was previously reported that Z-360 treatment in combination with gemcitabine prolonged the survival period in a lethal pancreatic cancer xenograft model in mice. In a phase Ib/IIa clinical study, Z-360 treatment displayed a trend of reduced pain in patients with advanced pancreatic cancer in combination with gemcitabine including analgesics such as opioids. Here, we investigated the mechanism of analgesic action of Z-360 in a severe cancer-induced pain model in mice, which is considered to be opioid-resistant, by examining ephrin B1 gene expression, N-methyl-D-aspartate receptor NR2B subunit phosphorylation, and interleukin-1β (IL-1β) production.Results: In a mouse model of cancer-induced pain, ephrin B1 gene expression in dorsal root ganglia (DRGs) and the phosphorylation of NR2B in the spinal cord were induced. Z-360 treatment inhibited both ephrin B1 gene expression and the phosphorylation of NR2B. In addition, IL-1β production increased in the cancer-inoculated hind paw of mice, but could be suppressed by treatment with Z-360. Moreover, we observed that the CCK1 receptor antagonist devazepide similarly suppressed up-regulation of ephrin B1 gene expression and IL-1β production, and that the intraperitoneal injection of sulfated CCK-8 induced the production of IL-1β in the cancer-inoculated region.Conclusions: We have identified a novel pain cascade, in which IL-1β production in cancer-inoculated regions induces ephrin B1 gene expression in DRGs and then ephrin B1 enhances the tyrosine phosphorylation of NR2B via Eph B receptor in the spinal cord. Notably, Z-360 relieves cancer-induced pain by preventing this pain cascade through the suppression of IL-1β production, likely via the blockade of CCK1 receptor. The pre-clinical results presented here support the analgesic action of Z-360 in pancreatic cancer patients with severe, opioid-resistant pain. Pre-clinical and clinical results have demonstrated that Z-360 combined with gemcitabine represents a promising pancreatic cancer therapy approach with characteristic analgesic effects in addition to the prolongation of survival.

Original languageEnglish
Article number72
JournalMolecular Pain
Volume6
DOIs
Publication statusPublished - 28-10-2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Cellular and Molecular Neuroscience
  • Anesthesiology and Pain Medicine

Fingerprint Dive into the research topics of 'Z-360, a novel therapeutic agent for pancreatic cancer, prevents up-regulation of ephrin B1 gene expression and phosphorylation of NR2B via suppression of interleukin-1 β production in a cancer-induced pain model in mice'. Together they form a unique fingerprint.

  • Cite this