3D Facial Ethnicity Identification Using PointNet++ with Data Augmentation Based on Farthest Point Sampling

Kazuma Okada, Takuma Terada, Ryosuke Kimura, Jia Qing Liu, Tomoko Tateyama, Yen Wei Chen

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Facial features vary among ethnic groups, and the analysis of facial shape is important in examining the similarity of these features. 3D facial point cloud data possesses diverse feature sets and has garnered significant attention for its applications in face recognition and face shape analysis. Within the domain of genetic research, the relationship between face shape and genetic factors has been particularly emphasized. Analyzing 3D facial data allows for the identification of specific genetic information that influences facial morphology. However, 3D facial data analysis via conventional image processing methods based on deep learning has proven to be challenging; thus, effective methods have not yet been established. Therefore, we propose a framework for face shape analysis by point cloud deep learning for genetic research based on PointNet and PointNet++, which allows direct input of 3D facial data, for advanced facial point cloud analysis. Furthermore, we propose a data augmentation method based on farthest point sampling that enables stable learning even with a small data set.

本文言語英語
ホスト出版物のタイトルGCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics
出版社Institute of Electrical and Electronics Engineers Inc.
ページ838-841
ページ数4
ISBN(電子版)9798350340181
DOI
出版ステータス出版済み - 2023
イベント12th IEEE Global Conference on Consumer Electronics, GCCE 2023 - Nara, 日本
継続期間: 10-10-202313-10-2023

出版物シリーズ

名前GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics

会議

会議12th IEEE Global Conference on Consumer Electronics, GCCE 2023
国/地域日本
CityNara
Period10-10-2313-10-23

All Science Journal Classification (ASJC) codes

  • 人工知能
  • エネルギー工学および電力技術
  • 電子工学および電気工学
  • 安全性、リスク、信頼性、品質管理
  • 器械工学
  • 原子分子物理学および光学

フィンガープリント

「3D Facial Ethnicity Identification Using PointNet++ with Data Augmentation Based on Farthest Point Sampling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル