A 3D Fusion U-Net with Dual CNN and Transformer Encoders for Lung Airway Segmentation

Liang Lyu, Shurong Chai, Jiaqing Liu, Tateyama Tomoko, Xu Qiao, Yen Wei Chen

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

The health of the lungs is significant importance to human well-being. As a vital respiratory organ, lung diseases have a high incidence and mortality rate worldwide. Accurate segmentation of the lung airways, including the trachea and bronchi, is crucial for the diagnosis of lung diseases. The recent coronavirus has further shown the importance of accurately distinguishing the lung airways from the lung parenchyma to assist in diagnosis. Therefore, developing an automated segmentation method that can accurately segment the lung airways from lung CT images is essential. Despite extensive research in this field, challenges remain. The unique tree-like structure of the lung airways and the fine-grained details at the terminal bronchioles pose difficulties for achieving precise segmentation using existing methods. In this study, we propose a novel dual-encoder network for accurate lung airways segmentation. Our method can efficient capture the local and global features using the combination of Convolutional Neural Networks (CNNs) and Transformer network. We evaluate our method on a lung CT dataset provided by Shandong University and demonstrate its superiority over existing methods.

本文言語英語
ホスト出版物のタイトルGCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics
出版社Institute of Electrical and Electronics Engineers Inc.
ページ24-28
ページ数5
ISBN(電子版)9798350340181
DOI
出版ステータス出版済み - 2023
イベント12th IEEE Global Conference on Consumer Electronics, GCCE 2023 - Nara, 日本
継続期間: 10-10-202313-10-2023

出版物シリーズ

名前GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics

会議

会議12th IEEE Global Conference on Consumer Electronics, GCCE 2023
国/地域日本
CityNara
Period10-10-2313-10-23

All Science Journal Classification (ASJC) codes

  • 人工知能
  • エネルギー工学および電力技術
  • 電子工学および電気工学
  • 安全性、リスク、信頼性、品質管理
  • 器械工学
  • 原子分子物理学および光学

フィンガープリント

「A 3D Fusion U-Net with Dual CNN and Transformer Encoders for Lung Airway Segmentation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル