抄録
Glial-cell-line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two structurally related, potent survival factors for sympathetic, sensory and central nervous system neurons. GDNF mediates its actions through a multicomponent receptor system composed of a ligand-binding glycosyl- phosphatidylinositol (GPI)-linked protein (designated GDNFR-α) and the transmembrane protein tyrosine kinase Ret. In contrast, the mechanism by which the NTN signal is transmitted is not well understood. Here we describe the identification and tissue distribution of a GPI-linked protein (designated NTNR-α) that is structurally related to GDNFR-α. We further demonstrate that NTNR-α binds NTN (K(d)~10pM) but not GDNF with high affinity; that GDNFR-α binds to GDNF but not NTN with high affinity; and that cellular responses to NTN require the presence of NTNR-α. Finally, we show that NTN, in the presence of NTNR-α, induces tyrosine-phosphorylation of Ret, and that NTN, NTNR-α and Ret form a physical complex on the cell surface. These findings identify Ret and NTNR-α as signalling and ligand- binding components, respectively, of a receptor for NTN and define a novel family of receptors for neurotrophic and differentiation factors composed of a shared transmembrane protein tyrosine kinase and a ligand-specific GPI- linked protein.
本文言語 | 英語 |
---|---|
ページ(範囲) | 717-721 |
ページ数 | 5 |
ジャーナル | Nature |
巻 | 387 |
号 | 6634 |
DOI | |
出版ステータス | 出版済み - 1997 |
外部発表 | はい |
All Science Journal Classification (ASJC) codes
- 一般